Правило вынесения из под корня

Алгебра. 8-й класс.

Правило вынесения из под корня

Класс: 8

Цели: Вывести правило «Вынесение множителя из-под знака корня», вывести правило «Внесение множителя под знак корня».

1. Актуализация.

Ученикам предлагается выполнить первое задание «Третий лишний». В каждой строке даны три элемента, надо установить лишний элемент. (На уроке используется презентация – Приложение 1)

Второе задание. На сколько групп можно разделить данные примеры?

  • назовите номера примеров, которые можно вычислить по теореме корень из произведения?
  • назовите номера примеров, которые можно вычислить по теореме произведение корней?

2. Проблемная ситуация.

Задание называется «Скорость счета». Задача учащихся решить 12 примеров за 1 минуту. В тетради записывать только ответы.

На доске даны примеры:

Проверка ответов см. Презентацию.

У учащихся возникает проблемная ситуация – как решить пример, если подкоренные выражения различны.

В ходе фронтальной беседы учитель подводит учащихся к тому, что сначала надо преобразовать подкоренные выражения.

3. Изучение нового материала.

3.1. Учитель объясняет, что сегодня ученики узнают два преобразования. Поэтому для удобства надо разделить полстраницы пополам. И оставить строку для названия преобразований.

Учитель: В левом столбце упростите . Каким образом можно представить подкоренное выражение?

В ходе фронтальной беседы учитель с учениками перебирают возможные варианты разложения числа 12. Обсуждают, какое из разложений удобно. Решают пример, обосновывая каждый шаг.

Появляется запись . Сравнивают подкоренные выражения в начале примера и в конце. Делают вывод, что упростили подкоренное выражение. Повторяют шаги.

Один из учеников у доски пробует таким же образом упростить ? Обсуждают название данного преобразования.

Формулируют алгоритм вынесения множителя из-под корня. В это время алгоритм появляется на экране.

3.2. После этого переходят ко второй колонке. Определяют, какое там будет преобразование. Решают пример – представить в виде корня . Обсуждают способ решения. Применяют этот способ для примера . Формулируют алгоритм, в ходе повторения шагов. Появляется алгоритм.

4. Этап закрепления нового материала.

4.1. Учитель раздает листочки, на которых записаны алгоритмы, и приведены примеры, которые решали. (Приложение 2). Ученики читают хором каждый алгоритм.

Алгоритм

Вынести множитель из-под корняВнести множитель под корень
1. Разложить подкоренное выражение на множители удобным способом.   1. Число, стоящее перед корнем, представить в виде корня.
2. Применить теорему «корень из произведения».2. Применить теорему «произведение корней».

4.2. После прочтения алгоритмов, ученики решают два номера – на вынесения и внесение множителя. В каждом номере по три примера. Первый пример разбирают устно на экране компьютера. Второй пример записывают в тетради, работая с доской. Третий пример решают самостоятельно, затем решение проверяют по экрану.

Сопутствующие вопросы:

  • Кто самостоятельно решил пример?
  • У кого возникали сомнения в ходе решения?
  • Кому требуется помощь в решении примеров?
  • Кто не понял решение примера?
  • С какой целью выполнили это задание?

5. Итог урока

  • Над какой темой работали?
  • Какие цели ставили в начале урока?
  • Кто достиг поставленной цели?
  • Дать качественную оценку работы учеников на уроке.

Учитель проверяет первичное усвоение темы и получает обратную связь. На экране нужно найти соответствие между выражениями из первой и второй строк.

Ученики предлагают варианты, обсуждают и проверяют.

Учитель возвращает учеников к проблемной ситуации, возникшей вначале урока. Ученики применяют новые знания для решения примера.

Учитель совместно с учениками определяет дальнейшие действия на следующие уроки: закреплять правила и решать примеры.

6. Домашнее задание.

Выучить 2 алгоритма, выполнить примеры по листочку.

Домашнее задание.

  1. Вынести множитель из-под корня:  ; ; .
  2. Внести множитель под корень: ; ; ; .
  3. Вычислить: а); б).

Приложение 1
Приложение 2
Приложение 3

29.08.2009

Источник: https://urok.1sept.ru/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/537593/

Квадратный корень. Исчерпывающий гид (2020)

Правило вынесения из под корня

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Для начала почитай комментарии внизу этой статьи, чтобы понять насколько крутой материал ты сейчас читаешь! )

А теперь давай попробуем разобраться, что это за понятие такое “квадратный корень”.

К примеру, перед нами уравнение  .

Какое решение у данного уравнения? Какие числа можно возвести в квадрат и получить при этом  ?

Вспомнив таблицу умножения, ты легко дашь ответ:   и   (ведь при перемножении двух отрицательных чисел получается число положительное)!

Для упрощения математики ввели специальное понятие квадратного корня и присвоили ему специальный символ  

Давай разберемся с корнем до конца…

СОДЕРЖАНИЕ

Введение понятия арифметического квадратного корня​  Свойства арифметического квадратного корня Извлечение корней из больших чисел Как тебе квадратный корень? Все понятно?

Введение понятия арифметического квадратного корня​

Квадратным корнем (арифметическим квадратным корнем) из неотрицательного числа   называется такое неотрицательное число, квадрат которого равен  .  .

А почему же число   должно быть обязательно неотрицательным?

Например, чему равен  ?

Так-так, попробуем подобрать. Может, три? Проверим:  , а не  .

Может,  ? Опять же, проверяем:  .

Ну что же, не подбирается?

Это и следовало ожидать – потому что нет таких чисел, которые при возведении в квадрат дают отрицательное число!

Это надо запомнить: число или выражение под знаком корня должно быть неотрицательным!

Однако ты наверняка уже заметил, что в определении сказано, что «квадратным корнем из числа   называется такое неотрицательное число, квадрат которого равен  ».

А в самом начале мы разбирали пример  , подбирали числа, которые можно возвести в квадрат и получить при этом  , ответом были   и  , а тут говорится про какое-то «неотрицательное число»!

Такое замечание вполне уместно. Здесь необходимо просто разграничить понятия квадратных уравнений и арифметического квадратного корня из числа.

К примеру,   не равносильно выражению  .

Из   следует, что

 , то есть   или  ;   (не помнишь почему так? Почитай тему “Модуль числа”!)

А из   следует, что  .

Конечно, это очень путает, но это необходимо запомнить, что знаки являются результатом решения уравнения, так как при решении уравнения мы должны записать все иксы, которые при подстановке в исходное уравнение дадут верный результат.

В наше квадратное уравнение подходит как  , так и  .

Однако, если просто извлекать квадратный корень из чего-либо, то всегда получаем один неотрицательный результат.

Итак, вкратце на примере, нужно ли ставить “плюс-минус” (этот наглядный пример привёл наш читатель Игорь, спасибо ему за это):

Пусть есть две ситуации:

1)  

2)  

В первом случае у нас квадратное уравнение и его решением будет   (уже видно отличие от второго случая) и далее получаем два корня  

Во втором случае у нас НЕТ квадратного уравнения, просто х равен корню из числа и в этом случае ответ всегда “одно неотрицательное число”, то есть 8.

А теперь попробуй решить такое уравнение  .

Уже все не так просто и гладко, правда? Попробуй перебрать числа, может, что-то и выгорит?

Начнем с самого начала – с нуля:   – не подходит.

Двигаемся дальше  ;   – меньше трех, тоже отметаем.

А что если  ? Проверим:   – тоже не подходит, т.к. это больше трех.

С отрицательными числами получится такая же история.

И что же теперь делать? Неужели перебор нам ничего не дал?

Совсем нет, теперь мы точно знаем, что ответом будет некоторое число между   и  , а также между   и  .

Кроме того, очевидно, что решения не будут целыми числами. Более того, они не являются рациональными.

И что дальше?

Давай построим график функции   и отметим на нем решения.

Попробуем обмануть систему и получить ответ с помощью калькулятора! Извлечем корень из  , делов-то!

Ой-ой-ой, выходит, что   Такое число никогда не кончается.

Как же такое запомнить, ведь на экзамене калькулятора не будет!?

Все очень просто, это и не надо запоминать, необходимо помнить (или уметь быстро прикинуть) приблизительное значение.   и   уже сами по себе ответы.

Такие числа называются иррациональными, именно для упрощения записи таких чисел и было введено понятие квадратного корня.

Рассмотрим еще один пример для закрепления. Разберем такую задачку: тебе необходимо пересечь по диагонали квадратное поле со стороной   км, сколько км тебе предстоит пройти?

Самое очевидное здесь рассмотреть отдельно треугольник и воспользоваться теоремой Пифагора:  .

Таким образом,  .

Так чему же здесь равно искомое расстояние?

Очевидно, что расстояние не может быть отрицательным, получаем, что  . Корень из двух приблизительно равен  , но, как мы заметили раньше,   -уже является полноценным ответом.

Извлечение корней

Чтобы решение примеров с корнями не вызывало проблем, необходимо их видеть и узнавать.

Для этого необходимо знать, по меньшей мере, квадраты чисел от   до  , а также уметь их распознавать.

То есть, тебе необходимо знать, что   в квадрате равно  , а также, наоборот, что   – это   в квадрате.

Первое время в извлечении корня тебе поможет эта таблица.

Как только ты прорешаешь достаточное количество примеров, то надобность в ней автоматически отпадет.

Попробуй самостоятельно извлечь квадратный корень в следующих выражениях:

Ответы:

Ну как, получилось? Теперь давай посмотрим такие примеры:

Ответы:

 Свойства арифметического квадратного корня

Теперь ты знаешь, как извлекать корни и пришло время узнать о свойствах арифметического квадратного корня. Их всего 3:

  • умножение;
  • деление;
  • возведение в степень.

Их ну просто очень легко запомнить с помощью этой таблицы и, конечно же, тренировки:

СвойствоПример
Корень произведения равен произведению корней:
Корень из дроби – это корень из числителя и корень из знаменателя: , если  
Чтобы возвести корень в степень, достаточно возвести в эту степень подкоренное значение: , при  

Попробуем решить по несколько примеров на каждое свойство!

Умножение корней

Взглянул еще раз на табличку… И, поехали!

Начнем с простенького:

Минуууточку.   это  , а это значит, что мы можем записать вот так:

Усвоил? Вот тебе следующий:

Корни из получившихся чисел ровно не извлекаются? Не беда – вот тебе такие примеры:

А что, если множителей не два, а больше? То же самое! Формула умножения корней работает с любым количеством множителей:

Теперь полностью самостоятельно:

Ответы: Молодец! Согласись, все очень легко, главное знать таблицу умножения!

Деление корней

С умножением корней разобрались, теперь приступим к свойству деления.

Напомню, что формула в общем виде выглядит так:

 , если  .

А значит это, что корень из частного равен частному корней.

Ну что, давай разбираться на примерах:

Вот и вся наука. А вот такой пример:

Все не так гладко, как в первом примере, но, как видишь, ничего сложного нет.

А что, если попадется такое выражение:

Надо просто применить формулу в обратном направлении:

А вот такой примерчик:

Еще ты можешь встретить такое выражение:

Все то же самое, только здесь надо вспомнить, как переводить дроби (если не помнишь, загляни в тему дроби и возвращайся!). Вспомнил? Теперь решаем!

Уверена, что ты со всем, всем справился, теперь попробуем возводить корни в степени.

Возведение в степень

А что же будет, если квадратный корень возвести в квадрат? Все просто, вспомним смысл квадратного корня из числа   – это число, квадратный корень которого равен  .

Так вот, если мы возводим число, квадратный корень которого равен  , в квадрат, то что получаем?

Ну, конечно,  !

Рассмотрим на примерах:

Все просто, правда? А если корень будет в другой степени? Ничего страшного!

Придерживайся той же логики и помни свойства и возможные действия со степенями.

Забыл?

Почитай теорию по теме «Степень и ее свойства» и тебе все станет предельно ясно.

Вот, к примеру, такое выражение:

В этом примере степень четная, а если она будет нечетная? Опять же, примени свойства степени и разложи все на множители:

С этим вроде все ясно, а как извлечь корень из числа в степени? Вот, к примеру, такое:

Довольно просто, правда? А если степень больше двух? Следуем той же логике, используя свойства степеней:

Ну как, все понятно? Тогда реши самостоятельно примеры:

А вот и ответы:

Внесение под знак корня

Что мы только не научились делать с корнями! Осталось только потренироваться вносить число под знак корня!

Это совсем легко! 

Молодец! У тебя получилось внести число под знак корня! Перейдем к не менее важному – рассмотрим, как сравнивать числа, содержащие квадратный корень!

Сравнение корней

Зачем нам учиться сравнивать числа, содержащие квадратный корень?

Очень просто. Часто, в больших и длиииинных выражениях, встречающихся на экзамене, мы получаем иррациональный ответ (помнишь, что это такое? Мы с тобой сегодня об этом уже говорили!)

Полученные ответы нам необходимо расположить на координатной прямой, например, чтобы определить, какой интервал подходит для решения уравнения. И вот здесь возникает загвоздка: калькулятора на экзамене нет, а без него как представить какое число больше, а какое меньше? То-то и оно!

Например, определи, что больше:   или  ?

Сходу и не скажешь. Ну что, воспользуемся разобранным свойством внесения числа под знак корня?

Тогда вперед:

Извлечение корней из больших чисел

До этого мы вносили множитель под знак корня, а как его вынести? Надо просто разложить его на множители и извлечь то, что извлекается!

Можно было пойти по иному пути и разложить на другие множители:

Что дальше? А дальше раскладываем на множители до самого конца:

Неплохо, да? Любой из этих подходов верен, решай как тебе удобно.

Разложение на множители очень пригодится при решении таких нестандартных заданий, как вот это:

Не пугаемся, а действуем! Разложим каждый множитель под корнем на отдельные множители:

А теперь попробуй самостоятельно (без калькулятора! его на экзамене не будет):

Получилось  ? Молодец, все верно!

А теперь попробуй вот такой пример решить:

А пример-то – крепкий орешек, так сходу и не разберешься, как к нему подступиться. Но нам он, конечно, по зубам.

Подведем итоги

  1. Квадратным корнем (арифметическим квадратным корнем) из неотрицательного числа   называется такое неотрицательное число, квадрат которого равен  .
     .
  2. Если мы просто извлекаем квадратный корень из чего-либо, то всегда получаем один неотрицательный результат.
  3. Свойства арифметического корня:
    СвойствоПример
    Корень произведения равен произведению корней , если  
    Корень из дроби – это корень из числителя и корень из знаменателя. , если  
    Чтобы возвести корень в степень, достаточно возвести в эту степень подкоренное значение , при  
  4. При сравнении квадратных корней необходимо помнить, что чем больше число под знаком корня, тем больше сам корень.

Как тебе квадратный корень? Все понятно?

Мы постарались объяснить тебе без воды все что нужно знать на экзамене про квадратный корень.

Теперь твоя очередь. Напиши нам сложная это для тебя тема или нет.

Узнал ты что-то новое или все было и так ясно.

Источник: https://youclever.org/book/kvadratnyj-koren-1

Как вынести множитель из-под знака корня: теория, примеры, решения

Правило вынесения из под корня

В данном материале мы продолжим рассказывать о том, как преобразовывать рациональные выражения, а конкретно о том, как правильно выносить множитель из-под знака корня.

В первом пункте объясним, зачем нужно такое преобразование, далее покажем, как именно оно делается и сформулируем общее для всех случаев правило.

Далее покажем, какие существуют методы, чтобы привести подкоренное выражение к удобному для преобразования виду, и разберем примеры решений задач.

Yandex.RTB R-A-339285-1

Чтобы лучше понять суть подобного преобразования, нужно сначала сформулировать, что такое вообще вынесение множителя из-под знака корня. Сформулируем определение:

Определение 1

Вынесение множителя из-под знака корня представляет собой замену выражения Bn·Cn на произведение B·Cn с условием, что n – нечетное число, или же на произведение B·C – где n – четное число, а B и C – другие числа и выражения.

Если мы имеем в виду только квадратный корень, то есть число n равно двум, то процесс вынесения множителя можно свести к замене выражения B2·C на произведение B·C.  Отсюда и название данного преобразования: после того, как оно было проведено, множитель By оказывается свободным от знака корня.

Приведем примеры, поясняющие данное определение. Так, допустим, у нас есть выражение 22·3. Оно аналогично B2·C, где B равно двум, а C – трем. Заменив данный корень на произведение 2·3 и опустив знаки модулей (это можно сделать, поскольку оба множителя являются положительными числами), мы получим 2·3. Мы вынесли множитель 22 из-под знака корня.

Приведем еще один пример подобного преобразования. У нас есть выражение (x2-3·x·y·z)2·x=x2-3·x·y·z·x. Здесь из-под корня был вынесен не просто числовой множитель, а целое выражение с переменными (x2−3·x·y·z)2.

Оба примера относятся к случаю вынесения множителя из-под квадратного корня. Можно также производить данные преобразования и для корней n-ной степени. Вот пример с кубическим корнем: (3·a2)3·2·a23=3·a2·2·a23

Пример с корнем шестой степени: 12·x2+y26·5·(x2+y2)6 можно преобразовать в произведение 12·x2+y2·5·(x2·y2)6, которое, в свою очередь, упрощается до 12·(x2+y2)·5·(x2+y2)6.  В данном случае мы выносим множитель 12·x2+y26.

Мы выяснили, что такое вынесение множителя из-под знака корня. Теперь перейдем к доказательствам, т.е. поясним, почему произведение, полученное в итоге данного преобразования, равнозначно исходному выражению.

Почему возможно заменить корень на произведение

В этом пункте мы будем разбираться, как возможна такая замена и почему корень Bn·Cn равнозначен произведениям B·Cn и B·Cn. Обратимся к ранее изученным теоретическим положениям.

Когда мы разбирали преобразование иррациональных выражений, у нас получились некоторые важные результаты, которые мы собрали в таблицу. Здесь нам будут нужны только два из них:

1. Выражение A·Bn при условии нечетности n может быть заменено на An·Bn, а для четных n – An·Bn.

2. Выражение Ann при нечетном значении n может быть преобразовано в A, а при четном – в |A|.

Определение 2

Используя эти результаты и зная основные свойства модуля, мы можем вывести следующее:

  • при четном n: Bn·Cn=Bnn·Cn=B·Cn;
  • при нечетном n: Bn·Cn=Bnn·Cn=Bnn·Cn=B·Cn.

Эти выражения лежат в основе преобразований, которые мы проводим, вынося множитель из-под знака корня.

Следовательно, можно вывести две формулы:

Определение 3

  • B1n·B2n·…·Bkn·Cn=B1·B2·…·Bk·Cn для нечетного n;
  • B1n·B2n·…·Bkn·Cn=B1·B2·…·Bk·Cn для четного n.

Здесь B1, B2, и др. могут быть как числами, так и выражениями.

С помощью данных формул можно выполнить вынесение из-под корня сразу нескольких множителей.

Основное правило вынесения множителя из-под корня

Когда нам нужно решать примеры с подобными преобразованиями, чаще всего приходится предварительно приводить подкоренное выражение к виду Bn·C.  С учетом этого момента мы можем записать следующие правила.

Определение 4

Для вынесения множителя из-под корня в выражении An нужно предварительно привести корень к виду Bn·Cn и после этого перейти к произведению B·Cn (при нечетном показателе) или к B·Cn (при четном показателе, при необходимости раскрываем модули).  

Таким образом, схема решения подобных задач выглядит следующим образом:

An→Bn·Cn→B·Cn, если n-нечетноеB·Cn, если n-четное

Если нам надо вынести несколько множителей, то действуем так:

An→B1n·B2n·…·Bkn·Cn→B1·B2·…·Bk·Cn, если n-нечетноеB1·B2·…·Bk·Cn, если n-четное

Теперь можно переходить к решению задач.

Задачи на вынесение множителя из-под знака корня

Пример 1

Условие: выполните вынесение множителя за знак корня в трех выражениях: 22·7, -1232·5, (-0,4)7·117.

Решение

Мы видим, что подкоренные выражения во всех трех случаях уже имеют нужный нам вид. Поскольку в первых двух примерах показателем корня является четное число, а в третьем – нечетное, записываем следующее:

  1.  Показатель корня равен 2. Берем правило вынесения множителя для четного показателя и вычисляем: 22·7=2·7=2·7
  2. Во втором выражении показатель тоже четный, значит,  -1232·5=-123·5=123·5 В этом случае мы можем сначала преобразовать выражения, исходя из основных свойств корня:

    -1232·5=-12·1232·5=1232·5

    А потом уже выносить множитель: 1232·5=123·5=123·5.

  3. Последнее выражение имеет нечетный показатель, поэтому нам понадобится другое правило: (-0,4)7·117=-0,4·117. Возможен и такой вариант расчета:

    -0,47·117=(-1)7·0,47·117==-0,47·117=-0,47·117=-0,4·117

    ​​​​​​Или такой:

    -0,47·117=(-1)7·0,47·117==-0,47·117=0,47·-117=0,4·-117=-0,4·117

Ответ: 1) 2·7; 2) 123·5; 3) -0,4·117.

Пример 2

Условие: преобразуйте выражение (-2)4·(0,3)4·74·114.

Решение:

При помощи схемы, приведенной во втором пункте статьи, мы можем вынести из-под корня сразу три множителя.

(-2)4·(0,3)4·74·114==-2·0,3·7·114=4,2·114

Можно сделать преобразование в несколько шагов, вынося множителя по одному, но так будет гораздо дольше.

Есть и другой способ. Преобразуем само выражение, приведя его к виду Bn·C. После этого уже будем выносить множители:

(-2)4·(0,3)4·74·114==(-2·0,3·7)4·114=(-4,2)4·114==-4,2·114=4,2·114

Ответ: (-2)4·(0,3)4·74·114=-4,2·114=4,2·114.

Разберем более подробно тот случай, когда подкоренное выражение требует предварительного преобразования. Здесь есть несколько моментов, которые нужно дополнительно пояснить.

Предварительное преобразование подкоренного выражения

Мы уже отмечали, что выражение под корнем не всегда имеет удобный для нас вид. Часто корень дан как An, и множитель, который нужно вынести, не представлен в явном виде. Иногда это обозначено в условии, но довольно часто множитель приходится определять самостоятельно. Посмотрим, как надо действовать в этих случаях.

Допустим, нам надо вынести заранее определенный множитель B. Естественно, подкоренное выражение должно быть таким, чтобы эта операция была возможна. Тогда для преобразования An в Bn·Cn достаточно определить второй множитель, т.е. вычислить значение C из выражения A=Bn·C.

Пример 3

Условие: есть выражение 24·x3. Вынесите из-под знака корня множитель 23.

Решение

Здесь мы имеем n=3, A=24·x, B3=23. Тогда из A=Bn·С вычисляем C=A:(Bn) =24·x:(23) =3·x.

Значит, 24·x3=23·3·x3. Подкоренное выражение имеет нужный нам вид, и мы можем воспользоваться правилом для нечетного показателя и подсчитать: 24·x3=23·3·x3=2·3·x3.

Ответ: 24·x3=2·3·x3.

А как быть в случае, если множитель, который нужно вынести, не указан?  Тогда у нас есть определенная свобода выбора, и мы можем использовать несколько подходов к решению задачи.

Допустим, нам дано выражение, под корнем у которого стоит степень или произведение нескольких степеней. В таком случае, зная основные свойства степени, мы можем преобразовать выражение в удобный для нас вид с очевидно указанными множителями для вынесения.

Пример 4

Условие: необходимо вынести множитель из-под корня в трех выражениях  – 24·54, 27·54, 222·54.

Решение 

Преобразование первого выражения не представляет особой сложности, т.к. подобные примеры мы уже разбирали. Сразу вычисляем: 24·54=2·54=2·54.

Во втором примере легко догадаться, как преобразовать подкоренное выражение: нужно просто представить 27 как 24·23.

27·54=24·23·54=24·404=2·404=2·404

В последнем примере также нужно начать с преобразования подкоренного выражения. Сразу отметим, что итоговый вид будет таким:

254·22·54

Теперь покажем, как именно прийти к этому виду. Сначала выполняем деление 22 на 4, получаем 5 с остатком 2 (если нужно, повторите, как правильно выполнять деление с остатком). Иначе говоря, 22 можно рассматривать как 4·5+2. Используя свойства степени, можем записать:

222+25·4+2=25·4·22=(25)4·22

Таким образом:

222·54=(25)4·22·54=(25)4·204==25·204=32·204

Ответ: 1) 24·54=2·54, 2) 27·54=2·404, 3) 222·54=32·204.

Если выражение под корнем не является степенью или произведением степеней, надо попробовать представить его в таком виде. Чаще всего встречаются следующие случаи.

Подкоренное выражение – натуральное составное число. Тогда мы сразу можем увидеть нужные множители, которые надо вынести из-под знака корня, предварительно разложив данное число на простые множители.

Пример 5

Условие: выполните вынесение множителя из-под знака корня в следующих выражениях: 1) 45; 2) 135; 3) 3456; 4) 102.

  1.  Выполняем разложение 45 на простые множители.

451551335

То есть 45=3·3·5=32·5, а 45=32·5. В этом выражении видно, что выносить мы будем множитель 32. Вычисляем:

32·5=3·5=3·5

  1. Теперь представим в нужном виде число 135 и получим: 135=3·3·3·5=33·15. Иначе можно записать, что 32·3·5=32·15. Следовательно, 135=32·15. Мы видим, что вынесению из-под знака корня подлежит множитель 32:

32·15=3·15=3·15

  1. Разложим на простые множители число 3456:

3456172886443221610854279312222222333

У нас получилось, что 3456=27·33 , а 3456=27·33. Поскольку 27=23·2+1=(23)2·2 и 33=32·3, то 27·33=(23)2·2·32·3=(23)2·32·6==23·3·6=24·6

  1.  Представим натуральное число 102 как произведение простых множителей и получим 2·3·17. Видим, что все множители имеют показатель, равный единице, а показатель корня в этом примере равен двум. Следовательно, в данном примере ни один множитель не нужно выносить из-под знака корня, то есть такое действие для 102 нецелесообразно.

Ответ: 1) 45=3·5; 2) 135=3·15; 3) 3456=24·6; 4) 102.

Теперь разберем, как решать примеры, у которых подкоренное выражение представлено в виде обыкновенной дроби.

В этом случае следует числитель и знаменатель разложить на простые множители и посмотреть, можно ли вынести какие-то из них за знак корня.

Если у нас есть десятичная дробь или смешанное число, предварительно заменяем их обыкновенными дробями, после чего переходим от корня отношения к отношению корней.

Пример 6

Условие: выполните вынесение множителя за корень в выражении 200·0,000189·x3 и упростите его.

Решение

Для начала перейдем от десятичной дроби к обыкновенной и разложим ее числитель и знаменатель на простые множители.

0,189=1891000000=33·726·56

Используя свойства степени, перепишем выражение в следующем виде:

322·523·7

Подставим получившееся выражение в исходное и получим:

200·0,000189·x3==200·322·523·7·x3==200·322·52·7·x3=6·7·x3

К такому же ответу можно прийти и с помощью других преобразований:

200·0,000189·x3==200·1891000000·x3=200·18910000003·x3==200·189310000003·x3=200·33·7310033·x3==200·3·73100·x3=6·73·x3=6·7·x3

Ответ: 200·0,000189·x3=6·7·x3.

Иными словами, для обнаружения множителя, который можно вынести за знак корня, можно преобразовывать подкоренное выражение любыми допустимыми способами.

Пример 7

Условие: выполните упрощение иррационального выражения 2·(3+2·2).

Решение

Мы можем преобразовать выражение в скобках как 2+2·2+1 и далее как 22+2·2·1+12.

То, что у нас получилось, можно свернуть в квадрат суммы с помощью формулы сокращенного умножения: 22+2·2·1+1=2+12.

В итоге: 2·3+2·2=2·2+12. Теперь выносим 2+12 за знак корня и упрощаем выражение:

2·2+12=2·2+1==2·2+1=2+2

Ответ: 2·3+2·2=2+2.

Теперь посмотрим, как вынести из-под знака корня выражение, содержащее переменные. В целом можно сказать, что для этого используются те же методы, что и при работе с числами.

Пример 8

Условие: вынесите множитель из-под знака корня в выражениях (x-5)54 и  (x-5)64.

Решение

  1. Выполняем преобразование в первом примере.

(x-5)54=(x-5)4·x-54=x-5·x-54

Знак модуля можно опустить. Посмотрим, каким условием определяется область допустимых значений переменной для исходного выражения. Таким условием будет неравенство (x−5)5≥0. Для его решения выбираем метод интервалов и получаем x≥5. Если значение x принадлежит области допустимых значений, то значением выражения x-5 будет неотрицательное число. Значит, можем записать следующее:

x-5·x-54=x-5·x-54

  1. (x-5)64=(x-5)4·x-524==x-5·(x-5)24=x-5·x-524

Выполним сокращение показателей корня и степени на два. Обратимся к таблице результатов из статьи о преобразовании иррациональных выражений, о которой мы говорили выше. Возьмем из нее следующий результат: выражение Amn·m можно заменить на An при условии, что m и n – натуральные числа.  Следовательно, 

x-5·x-524=x-5·x-5

Нужно ли здесь убирать знак модуля? Посмотрим на область допустимых значений данного выражения: ее составляют все действительные числа, поскольку (x−5)6≥0 для любого x. При этом значения x−5 могут быть больше 0, если x>5, равными 0 или отрицательными. Значит, оставляем выражение в виде x-5·x-5 или представляем его в виде системы уравнений

(x-5)·x-5, x≥5(5-x)·5-x, x

Источник: https://Zaochnik.com/spravochnik/matematika/vyrazhenija/kak-vynesti-mnozhitel-iz-pod-znaka-kornja/

Как складывать квадратные корни

Правило вынесения из под корня

Квадратным корнем из числа X называется число A, которое в процессе умножения самого на себя (A * A) может дать число X
Т.е. A * A = A2 = X, и √X = A.

Над квадратными корнями (√x), как и над другими числами, можно выполнять такие арифметические операции, как вычитание и сложение. Для вычитания и сложения корней их нужно соединить посредством знаков, соответствующих этим действиям (например √x – √y).

А потом привести корни к их простейшей форме – если между ними окажутся подобные, необходимо сделать приведение. Оно заключается в том, что берутся коэффициенты подобных членов со знаками соответствующих членов, далее заключаются в скобки и выводится общий корень за скобками множителя.

Коэффициент, который мы получили, упрощается по обычным правилам.

Шаг 1. Извлечение квадратных корней

Во-первых, для сложения квадратных корней сначала нужно эти корни извлечь. Это можно будет сделать в том случае, если числа под знаком корня будут полными квадратами. Для примера возьмем заданное выражение √4 + √9.

Первое число 4 является квадратом числа 2. Второе число 9 является квадратом числа 3. Таким образом, можно получить следующее равенство: √4 + √9 = 2 + 3 = 5
Все, пример решен.

Но так просто бывает далеко не всегда.

Шаг 2. Вынесение множителя числа из-под корня

Если полных квадратов нет под знаком корня, можно попробовать вынести множитель числа из-под знака корня. Для примера возьмём выражение √24 + √54.

Раскладываем числа на множители:
24 = 2 * 2 * 2 * 3,
54 = 2 * 3 * 3 * 3.

В числе 24 мы имеем множитель 4, его можно вынести из-под знака квадратного корня. В числе 54 мы имеем множитель 9.

Получаем равенство:
√24 + √54 = √(4 * 6) + √(9 * 6) = 2 * √6 + 3 * √6 = 5 * √6.

Рассматривая данный пример, мы получаем вынос множителя из-под знака корня, тем самым упрощая заданное выражение.

Шаг 3. Сокращение знаменателя

Рассмотрим следующую ситуацию: сумма двух квадратных корней – это знаменатель дроби, например, A / (√a + √b). Теперь перед нами стоит задача «избавиться от иррациональности в знаменателе».

Воспользуемся следующим способом: умножаем числитель и знаменатель дроби на выражение √a – √b.

Формулу сокращённого умножения мы теперь получаем в знаменателе:
(√a + √b) * (√a – √b) = a – b.

Аналогично, если в знаменателе имеется разность корней: √a – √b, числитель и знаменатель дроби умножаем на выражение √a + √b.

Возьмём для примера дробь:
4 / (√3 + √5) = 4 * (√3 – √5) / ( (√3 + √5) * (√3 – √5) ) = 4 * (√3 – √5) / (-2) = 2 * (√5 – √3).

Пример сложного сокращения знаменателя

Теперь будем рассматривать достаточно сложный пример избавления от иррациональности в знаменателе.

Для примера берём дробь: 12 / (√2 + √3 + √5).
Нужно взять её числитель и знаменатель и перемножить на выражение √2 + √3 – √5.

Получаем:

12 / (√2 + √3 + √5) = 12 * (√2 + √3 – √5) / (2 * √6) = 2 * √3 + 3 * √2 – √30.

Шаг 4. Вычисление приблизительного значения на калькуляторе

Если вам требуется только приблизительное значение, это можно сделать на калькуляторе путём подсчёта значения квадратных корней. Отдельно для каждого числа вычисляется значение и записывается с необходимой точностью, которая определяется количеством знаков после запятой. Далее совершаются все требуемые операции, как с обычными числами.

Пример вычисления приблизительного значения

Необходимо вычислить приблизительное значение данного выражения √7 + √5.

В итоге получаем:

√7 + √5 ≈ 2,65 + 2,24 = 4,89.

Обратите внимание: ни при каких условиях не следует производить сложение квадратных корней, как простых чисел, это совершенно недопустимо. То есть, если сложить квадратный корень из пяти и из трёх, у нас не может получиться квадратный корень из восьми.

Полезный совет: если вы решили разложить число на множители, для того, чтобы вывести квадрат из-под знака корня, вам необходимо сделать обратную проверку, то есть перемножить все множители, которые получились в результате вычислений, и в конечном результате этого математического расчёта должно получиться число, которое нам было задано первоначально.

Источник: https://imdiv.com/arts/view-Kak-skladyvat-kvadratnye-korni.html

Как вынести число из-под корня

Правило вынесения из под корня

Часто вынесение множителя (числа) из под знака корня может быть необходимо для совершения каких-либо арифметических операций, например, для сокращения дроби или вынесения общего множителя и дальнейшего преобразования выражения.

Давайте рассмотрим основные арифметические правила и определения, необходимые для того, чтобы понять, как вынести число из под корня.

Необходимые операции и определения

Разложение выражения на множители — это преобразование этого числа в произведение нескольких сомножителей без изменения значения исходного выражения.

Это довольно частая операция, необходимая для вынесения множителя из-под знака корня.

Для разложения на множители используются следующие приёмы:

  • Вынесение за скобки общего множителя;
  • Группировка множителей;
  • Применение формул сокращённого умножения;
  • Комбинация вышеизложенных методов.

При вынесении за скобки общего множителя для начала нужно определить множитель, который можно вынести, а затем разделить всё выражение на этот множитель и записать результат частного рядом со множителем как произведение, например:

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

$6×2 – 8xy +4x = 2x \cdot 3x – 2x \cdot 4y + 2x \cdot 2 = 2x \cdot (3x – 4y + 2)$.

Также для вынесения множителя используются формулы сокращённого умножения, например:

$(x + y)2 = x2 +2xy + y2$.

Оба продемонстрированных выше метода можно комбинировать.

Свойства корня

Теперь перейдём к более детальному рассмотрению корня.

Определение 1

Корнем $n$-нной степени из числа $b$ называют число, которое нужно возвести в $n$-нную степень чтобы получить число $b$:

$\sqrt[n]{b}= m$.

Замечание 1

Процесс получения корня называется его извлечением.

Левая часть равенства вида $\sqrt[n]{b} = m$ называется радикалом, то, что стоит непосредственно под знаком корня — подкоренным выражением, а число, стоящее слева сверху перед знаком корня называется показателем корня.

Правая же часть равенства после знака «равно» называется корнем $n$-нной степени из числа $b$.

При извлечении числа из-под корня нужно учитывать то, что в случае с корнем нечётной степени возможен лишь один ответ, математически это запишется так: $\sqrt[n]{x} = b$, тогда как в случае с извлечением корня чётной степени ответа будет два, причём один с положительным знаком, а другой с отрицательным, это записывается так: $\sqrt[n]{x} = ±b$.

Также существует ещё одна теорема, которую нужно знать при вынесении множителя из-под знака корня:

Теорема 1

Для извлечения корня $n$-ой степени из произведения, моно извлечь его из каждого сомножителя отдельно, а результаты перемножить. Математически это запишется так: $\sqrt[n]{xyz}=\sqrt[n]{x}\sqrt[n]{y}\sqrt[n]{z}\left(1\right)$.

Докажем эту теорему для случая если под корнем стоит положительное число, а степень $n$ является нечётной.

Для этого используем определение корня. У нас есть следующее равенство: $\sqrt[n]{a} = b$. Из определения корня получается, что $bn = a$, соответственно, возведя $b$ в степень $n$ мы получим подкоренное значение, здесь это $a$.

Применим эту логику к равенству $(1)$.

Для этого возведём в степень правую часть равенства. Но для того чтобы сделать это, необходимо возвести в степень произведение, а для этого нужно возвести в степень каждый сомножитель и затем перемножить их все между собой:

$(\sqrt[n]{x}\sqrt[n]{y}\sqrt[n]{z})n= (\sqrt[n]{x})n(\sqrt[n]{y})n(\sqrt[n]{z})n=x \cdot y \cdot z$

Получилось выражение, стоящее под знаком корня, а это значит, что теорема доказана.

Правила вынесения множителя из под знака корня

Определение 2

Вынесение множителя из-под знака корня $n$-ой степени — это упрощение выражения с помощью записи какого-либо множителя, являющегося частью подкоренного выражения, перед знаком корня. Например, $\sqrt[6]{192} = \sqrt[6]{64 \cdot 3} = 2 \sqrt[6]{3}$.

Для вынесения множителей из-под знака корня необходимо показатель выносимого множителя разделить на показатель корня и разместить перед корнем этот множитель с тем показателем степени, который получится в результате этого деления:

$\sqrt[n]{xmy} = y{\frac{m}{n}} \cdot \sqrt[n]{x}$

В частном случае, если приходится иметь дело с квадртным корнем, степень множителя, который необходимо вынести, нужно разделить на два, а сам множитель записать перед знаком корня:

$\sqrt{xmy} = y{\frac{m}{2}} \cdot \sqrt{x}$

В случае если приходится иметь дело с множителем-дробью, можно извлечь по отдельности корень из числителя и знаменателя, например:

$\sqrt[3]{\frac{64x}{343}}= \frac{\sqrt[3]{64x}}{\sqrt[3]{343}}= \frac{4}{7}\sqrt[3]{x}$

Общий порядок вынесения множителя из под корня такой:

  1. Сначала подкоренное значение раскладывается на множители непосредственно под знаком корня, а у этих множителей выделяются показатели степени.
  2. Затем показатель степени при множителе делится на показатель корня, а сам выносимый множитель записывается слева от радикала.

Пример 1

Вынесите множитель из-под знака корня в следующих выражениях:

$\sqrt{72x}; \sqrt[7]{128x{14}y3}; \sqrt{(a+b)2 7×3};\sqrt{\frac{x}{750}}$.

  1. $\sqrt{72x} = \sqrt{36 \cdot 2x}= \sqrt{36} \sqrt{2x} = 6\sqrt{2x}$.
  2. $\sqrt[7]{128x{14}y3} = \sqrt[7]{128} \sqrt[7]{x{14}}\sqrt[7]{y3}=2x\sqrt[7]{y3}$.
  3. $\sqrt{(a+b)2 7×3}= \sqrt{(a+b)2} \sqrt{7}\sqrt{x \cdot x2} = x (a+b)\sqrt{7x}$.
  4. $\sqrt{\frac{x}{750}}= \sqrt{\frac{1}{25\cdot 10\cdot3}} \sqrt{x} = \frac{1}{5}\sqrt{30x}$.

Источник: https://spravochnick.ru/matematika/kak_vynesti_chislo_iz-pod_kornya/

По закону
Добавить комментарий