Правило синусов косинусов тангенсов

Правила нахождения тригонометрических функций: синуса, косинуса, тангенса и котангенса

Правило синусов косинусов тангенсов

Понятия синуса, косинуса, тангенса и котангенса являются основными категориями тригонометрии — раздела математики, и неразрывно связаны с определением угла.

Владение этой математической наукой требует запоминания и понимания формул и теорем, а также развитого пространственного мышления. Именно поэтому у школьников и студентов тригонометрические вычисления нередко вызывают трудности.

Чтобы побороть их, следует подробнее познакомиться с тригонометрическими функциями и формулами.

Понятия в тригонометрии

Чтобы разобраться в базовых понятиях тригонометрии, следует сначала определиться с тем, что такое прямоугольный треугольник и угол в окружности, и почему именно с ними связаны все основные тригонометрические вычисления.

Треугольник, в котором один из углов имеет величину 90 градусов, является прямоугольным. Исторически эта фигура часто использовалась людьми в архитектуре, навигации, искусстве, астрономии.

Соответственно, изучая и анализируя свойства этой фигуры, люди пришли к вычислению соответствующих соотношений её параметров.

Основные категории, связанные с прямоугольными треугольниками — гипотенуза и катеты. Гипотенуза — сторона треугольника, лежащая против прямого угла. Катеты, соответственно, это остальные две стороны. Сумма углов любых треугольников всегда равна 180 градусам.

Сферическая тригонометрия — раздел тригонометрии, который не изучается в школе, однако в прикладных науках типа астрономии и геодезии, учёные пользуются именно им. Особенность треугольника в сферической тригонометрии в том, что он всегда имеет сумму углов более 180 градусов.

Углы треугольника

В прямоугольном треугольнике синусом угла является отношение катета, противолежащего искомому углу, к гипотенузе треугольника. Соответственно, косинус — это отношение прилежащего катета и гипотенузы. Оба эти значения всегда имеют величину меньше единицы, так как гипотенуза всегда длиннее катета.

Тангенс угла — величина, равная отношению противолежащего катета к прилежащему катету искомого угла, или же синуса к косинусу. Котангенс, в свою очередь, это отношение прилежащего катета искомого угла к противолежащему кактету. Котангенс угла можно также получить, разделив единицу на значение тангенса.

Единичная окружность

Единичная окружность в геометрии — окружность, радиус которой равен единице. Такая окружность строится в декартовой системе координат, при этом центр окружности совпадает с точкой начала координат, а начальное положение вектора радиуса определено по положительному направлению оси Х (оси абсцисс).

Каждая точка окружности имеет две координаты: ХХ и YY, то есть координаты абсцисс и ординат.

Выбрав на окружности любую точку в плоскости ХХ, и опустив с неё перпендикуляр на ось абсцисс, получаем прямоугольный треугольник, образованный радиусом до выбранной точки (обозначим её буквой С), перпендикуляром, проведённым до оси Х (точка пересечения обозначается буквой G), а отрезком оси абсцисс между началом координат (точка обозначена буквой А) и точкой пересечения G.

Полученный треугольник АСG — прямоугольный треугольник, вписанный в окружность, где AG — гипотенуза, а АС и GC — катеты. Угол между радиусом окружности АС и отрезком оси абсцисс с обозначением AG, определим как α (альфа). Так, cos α = AG/AC. Учитывая, что АС — это радиус единичной окружности, и он равен единице, получится, что cos α=AG. Аналогично, sin α=CG.

Кроме того, зная эти данные, можно определить координату точки С на окружности, так как cos α=AG, а sin α=CG, значит, точка С имеет заданные координаты (cos α;sin α).

Зная, что тангенс равен отношению синуса к косинусу, можно определить, что tg α = y/х, а ctg α = х/y.

Рассматривая углы в отрицательной системе координат, можно рассчитать, что значения синуса и косинуса некоторых углов могут быть отрицательными.

Значения тригонометрических функций

Рассмотрев сущность тригонометрических функций через единичную окружность, можно вывести значения этих функций для некоторых углов. Значения перечислены в таблице ниже.

Простейшие тригонометрические тождества

Уравнения, в которых под знаком тригонометрической функции присутствует неизвестное значение, называются тригонометрическими. Тождества со значением sin х = α, k — любое целое число:

  1. sin х = 0, х = πk.
  2. 2. sin х = 1, х = π/2 + 2πk.
  3. sin х = -1, х = -π/2 + 2πk.
  4. sin х = а, |a| > 1, нет решений.
  5. sin х = а, |a| ≦ 1, х = (-1)k * arcsin α + πk.

Тождества со значением cos х = а, где k — любое целое число:

  1. cos х = 0, х = π/2 + πk.
  2. cos х = 1, х = 2πk.
  3. cos х = -1, х = π + 2πk.
  4. cos х = а, |a| > 1, нет решений.
  5. cos х = а, |a| ≦ 1, х = ±arccos α + 2πk.

Тождества со значением tg х = а, где k — любое целое число:

  1. tg х = 0, х = π/2 + πk.
  2. tg х = а, х = arctg α + πk.

Тождества со значением ctg х = а, где k — любое целое число:

  1. ctg х = 0, х = π/2 + πk.
  2. ctg х = а, х = arcctg α + πk.

Формулы приведения

Эта категория постоянных формул обозначает методы, с помощью которых можно перейти от тригонометрических функций вида к функциям аргумента, то есть привести синус, косинус, тангенс и котангенс угла любого значения к соответствующим показателям угла интервала от 0 до 90 градусов для большего удобства вычислений.

Формулы приведения функций для синуса угла выглядят таким образом:

  • sin(900 — α) = α;
  • sin(900 + α) = cos α;
  • sin(1800 — α) = sin α;
  • sin(1800 + α) = -sin α;
  • sin(2700 — α) = -cos α;
  • sin(2700 + α) = -cos α;
  • sin(3600 — α) = -sin α;
  • sin(3600 + α) = sin α.

Для косинуса угла:

  • cos(900 — α) = sin α;
  • cos(900 + α) = -sin α;
  • cos(1800 — α) = -cos α;
  • cos(1800 + α) = -cos α;
  • cos(2700 — α) = -sin α;
  • cos(2700 + α) = sin α;
  • cos(3600 — α) = cos α;
  • cos(3600 + α) = cos α.

Использование вышеуказанных формул возможно при соблюдении двух правил. Во-первых, если угол можно представить как значение (π/2 ± a) или (3π/2 ± a), значение функции меняется:

  • с sin на cos;
  • с cos на sin;
  • с tg на ctg;
  • с ctg на tg.

Значение функции остаётся неизменным, если угол может быть представлен как (π ± a) или (2π ± a).

Во-вторых, знак приведенной функции не изменяется: если он изначально был положительным, таким и остаётся. Аналогично с отрицательными функциями.

Формулы сложения

Эти формулы выражают величины синуса, косинуса, тангенса и котангенса суммы и разности двух углов поворота через их тригонометрические функции. Обычно углы обозначаются как α и β.

Формулы имеют такой вид:

  1. sin(α ± β) = sin α * cos β ± cos α * sin.
  2. cos(α ± β) = cos α * cos β ∓ sin α * sin.
  3. tg(α ± β) = (tg α ± tg β) / (1 ∓ tg α * tg β).
  4. ctg(α ± β) = (-1 ± ctg α * ctg β) / (ctg α ± ctg β).

Эти формулы справедливы для любых величин углов α и β.

Формулы двойного и тройного угла

Тригонометрические формулы двойного и тройного угла — это формулы, которые связывают функции углов 2α и 3α соответственно, с тригонометрическими функциями угла α. Выводятся из формул сложения:

  1. sin2α = 2sinα*cosα.
  2. cos2α = 1 — 2sin2 α.
  3. tg2α = 2tgα / (1 — tg2 α).
  4. sin3α = 3sinα — 4sin3 α.
  5. cos3α = 4cos3 α — 3cosα.
  6. tg3α = (3tgα — tg3 α) / (1-tg2 α).

Переход от суммы к произведению

Учитывая, что 2sinx*cosy = sin(x+y) + sin(x-y), упростив эту формулу, получаем тождество sinα + sinβ = 2sin(α + β)/2 * cos(α − β)/2.

Аналогично sinα — sinβ = 2sin(α — β)/2 * cos(α + β)/2; cosα + cosβ = 2cos(α + β)/2 * cos(α − β)/2; cosα — cosβ = 2sin(α + β)/2 * sin(α − β)/2; tgα + tgβ = sin(α + β) / cosα * cosβ; tgα — tgβ = sin(α — β) / cosα * cosβ; cosα + sinα = √2sin(π/4 ∓ α) = √2cos(π/4 ± α).

Переход от произведения к сумме

Эти формулы следуют из тождеств перехода суммы в произведение:

  • sinα * sinβ = 1/2*[cos(α — β) — cos (α + β)];
  • cosα * cosβ = 1/2*[cos(α — β) + cos (α + β)];
  • sinα * cosβ = 1/2*[sin(α + β) + sin (α — β)].

Формулы понижения степени

В этих тождествах квадратную и кубическую степени синуса и косинуса можно выразить через синус и косинус первой степени кратного угла:

  • sin2 α = (1 — cos2α)/2;
  • cos2 α = (1 + cos2α)/2;
  • sin3 α = (3 * sinα — sin3α)/4;
  • cos3 α = (3 * cosα + cos3α)/4;
  • sin4 α = (3 — 4cos2α + cos4α)/8;
  • cos4 α = (3 + 4cos2α + cos4α)/8.

Универсальная подстановка

Формулы универсальной тригонометрической подстановки выражают тригонометрические функции через тангенс половинного угла.

  • sin x = (2tgx/2) * (1 + tg2 x/2), при этом х = π + 2πn;
  • cos x = (1 — tg2 x/2) / (1 + tg2 x/2), где х = π + 2πn;
  • tg x = (2tgx/2) / (1 — tg2 x/2), где х = π + 2πn;
  • ctg x = (1 — tg2 x/2) / (2tgx/2), при этом х = π + 2πn.

Частные случаи

Частные случаи простейших тригонометрических уравнений приведены ниже (k — любое целое число).

Частные для синуса:

Значение sin xЗначение x
0πk
1π/2 + 2πk
-1-π/2 + 2πk
1/2π/6 + 2πk или 5π/6 + 2πk
-1/2-π/6 + 2πk или -5π/6 + 2πk
√2/2π/4 + 2πk или 3π/4 + 2πk
-√2/2-π/4 + 2πk или -3π/4 + 2πk
√3/2π/3 + 2πk или 2π/3 + 2πk
-√3/2-π/3 + 2πk или -2π/3 + 2πk

Частные для косинуса:

Значение cos xЗначение х
0π/2 + 2πk
12πk
-12 + 2πk
1/2±π/3 + 2πk
-1/2±2π/3 + 2πk
√2/2±π/4 + 2πk
-√2/2±3π/4 + 2πk
√3/2±π/6 + 2πk
-√3/2±5π/6 + 2πk

Частные для тангенса:

Значение tg xЗначение х
0πk
1π/4 + πk
-1-π/4 + πk
√3/3π/6 + πk
-√3/3-π/6 + πk
√3π/3 + πk
-√3-π/3 + πk

Частные для котангенса:

Значение ctg xЗначение x
0π/2 + πk
1π/4 + πk
-1-π/4 + πk
√3π/6 + πk
-√3-π/3 + πk
√3/3π/3 + πk
-√3/3-π/3 + πk

Теорема синусов

Существует два варианта теоремы — простой и расширенный. Простая теорема синусов: a/sin α = b/sin β = c/sin γ. При этом, a, b, c — стороны треугольника, и α, β, γ — соответственно, противолежащие углы.

Расширенная теорема синусов для произвольного треугольника: a/sin α = b/sin β = c/sin γ = 2R. В этом тождестве R обозначает радиус круга, в который вписан заданный треугольник.

Теорема косинусов

Тождество отображается таким образом: a2 = b2 + c2 — 2*b*c*cos α. В формуле a, b, c — стороны треугольника, и α — угол, противолежащий стороне а.

Теорема тангенсов

Формула выражает связь между тангенсами двух углов, и длиной сторон, им противолежащих. Стороны обозначены как a, b, c, а соответствующие противолежащие углы — α, β, γ. Формула теоремы тангенсов: (a — b) / (a+b) = tg((α — β)/2) / tg((α + β)/2).

Теорема котангенсов

Связывает радиус вписанной в треугольник окружности с длиной его сторон. Если a, b, c — стороны треугольника, и А, В, С, соответственно, противолежащие им углы, r — радиус вписанной окружности, и p — полупериметр треугольника, справедливы такие тождества:

  • ctg A/2 = (p-a)/r;
  • ctg B/2 = (p-b)/r;
  • ctg C/2 = (p-c)/r.

Прикладное применение

Тригонометрия — не только теоретическая наука, связанная с математическими формулами.

Её свойствами, теоремами и правилами пользуются на практике разные отрасли человеческой деятельности — астрономия, воздушная и морская навигация, теория музыки, геодезия, химия, акустика, оптика, электроника, архитектура, экономика, машиностроение, измерительные работы, компьютерная графика, картография, океанография, и многие другие.

Синус, косинус, тангенс и котангенс — основные понятия тригонометрии, с помощью которых математически можно выразить соотношения между углами и длинами сторон в треугольнике, и найти искомые величины через тождества, теоремы и правила.

Источник: https://pure-t.ru/posts/pravila-nahozhdeniya-trigonometricheskih-funkciy/

Тригонометрия – синус, косинус, тангенс, котангенс

Правило синусов косинусов тангенсов
Возьмём x-axis и y-axis (orthonormal) и пусть O будет началом. Окружность с центром в точке O и с радиусом = 1известна как тригонометрическая окружность или единичная окружность.Если P точка на окружности и t это угол между PO и x тогда:

  • x-координата P называется косинусом t. Записывается как cos(t);
  • y-координата P называется синусом t. Записывается как sin(t);
  • Число sin(t)/cos(t) называется тангенсом t. Записывается как tg(t);
  • число cos(t)/sin(t) называется котангенсом t. Записывается как ctg(t).

sin : R -> R
Все тригонометрические функции являются периодическими.

Период синуса равен 2π.
Диапазон функции: [-1,1].

Функция косинуса

cos : R -> R
Период косисинуса равен 2π.
Диапазон функции: [-1,1].

Функция тангенса

tg : R -> R
Диапазон функции равен R.В этом случае период равенπ и функия не может быть определена для
x = (π/2) + kπ, k=0,1,2,…
График функции тангенса в интервале 0 – π

Анимираная графика тангенса(открыть в новом окне):
График функции тангенса в интервале 0 – 2π

Функция котангенса

ctg : R -> R
Диапазон функции равен R.В этом случае период равен π и функция не может быть определена для
x = kπ, k=0,1,2,…

Значения sin, cos, tan, cot при значениях углов 0°, 30°, 60°, 90°, 120°,135°, 150°, 180°, 210°, 225°, 240°, 270°, 300°, 315°, 330°, 360°

$\alphao$$0o$$30o$$45o$$60o$$90o$$120o$$135o$$150o$$180o$$210o$$225o$$240o$$270o$$300o$$315o$$330o$$360o$
$\alpha rad$$0$$\frac{\pi}{6}$$\frac{\pi}{4}$$\frac{\pi}{3}$$\frac{\pi}{2}$$\frac{2\pi}{3}$$\frac{3\pi}{4}$$\frac{5\pi}{6}$$\pi$$\frac{7\pi}{6}$$\frac{5\pi}{4}$$\frac{4\pi}{3}$$\frac{3\pi}{2}$$\frac{5\pi}{3}$$\frac{7\pi}{4}$$\frac{11\pi}{6}$$2\pi$
$sin\alpha$$0$$\frac{1}{2}$$\frac{\sqrt{2}}{2}$$\frac{\sqrt{3}}{2}$$1$$\frac{\sqrt{3}}{2}$$\frac{\sqrt{2}}{2}$$\frac{1}{2}$$0$$-\frac{1}{2}$$-\frac{\sqrt{2}}{2}$$-\frac{\sqrt{3}}{2}$$-1$$-\frac{\sqrt{3}}{2}$$-\frac{\sqrt{2}}{2}$$-\frac{1}{2}$$0$
$cos\alpha$$1$$\frac{\sqrt{3}}{2}$$\frac{\sqrt{2}}{2}$$\frac{1}{2}$$0$$-\frac{1}{2}$$-\frac{\sqrt{2}}{2}$$-\frac{\sqrt{3}}{2}$$-1$$-\frac{\sqrt{3}}{2}$$-\frac{\sqrt{2}}{2}$$-\frac{1}{2}$$0$$\frac{1}{2}$$\frac{\sqrt{2}}{2}$$\frac{\sqrt{3}}{2}$$1$
$tan\alpha$$0$$\frac{\sqrt{3}}{3}$$1$$\sqrt{3}$$-$$-\sqrt{3}$$-1$$-\frac{\sqrt{3}}{3}$$0$$\frac{\sqrt{3}}{3}$$1$$\sqrt{3}$$-$$-\sqrt{3}$$-1$$-\frac{\sqrt{3}}{3}$$0$
$cot\alpha$$-$$\sqrt{3}$$1$$\frac{\sqrt{3}}{3}$$0$$-\frac{\sqrt{3}}{3}$$-1$$-\sqrt{3}$$-$$\sqrt{3}$$1$$\frac{\sqrt{3}}{3}$$0$$-\frac{\sqrt{3}}{3}$$-1$$-\sqrt{3}$$-$

Самый простой способ, чтобы запомнить основные значения sin и cosуглов 0°, 30°, 60°, 90°:
sin([0, 30, 45, 60, 90]) = cos([90, 60, 45, 30, 0]) = $\sqrt{\frac{[0, 1, 2, 3, 4]}{4}}$

Тригонометрические тождества

Для t радиан одна точка соответствует с координатами P(cos(t),sin(t)) на единичной окружности. Квадрат расстояния [OP] = 1. Вычисляя расстояние для этой точки с координатами P, для каждого t мы получим:

cos2(t) + sin2(t) = 1

Если t + t' = 180° тогда:

  • sin(t) = sin(t')
  • cos(t) = -cos(t')
  • tg(t) = -tg(t')
  • ctg(t) = -ctg(t')

Если t + t' = 90° тогда:

  • sin(t) = cos(t')
  • cos(t) = sin(t')
  • tg(t) = ctg(t')
  • ctg(t) = tg(t')
$-\alpha$$90\circ – \alpha$$90\circ + \alpha$$180\circ – \alpha$
$\textrm{ sin }$$-\textrm{ sin }\alpha$$\textrm{ cos }\alpha$$\textrm{ cos } \alpha$$\textrm{ sin }\alpha$
$\textrm{ cos }$$\textrm{ cos }\alpha$$\textrm{ sin }\alpha$$-\textrm{ sin} \alpha$$-\textrm{ cos }\alpha$
$\textrm{ tg }$$-\textrm{ tg }\alpha$$\textrm{ ctg }\alpha$$-\textrm{ ctg } \alpha$$-\textrm{ tg }\alpha$
$\textrm{ ctg }$$-\textrm{ ctg }\alpha$$\textrm{ tg }\alpha$$-\textrm{ tg } \alpha$$-\textrm{ ctg }\alpha$

$\sin\frac{\alpha}{2}=\pm\sqrt{\frac{1-\cos\alpha}{2}}$+ если $\frac{\alpha}{2}$ в квадранте | или ||

– если $\frac{\alpha}{2}$ в квадранте ||| или |V

$\cos\frac{\alpha}{2}=\pm\sqrt{\frac{1+\cos\alpha}{2}}$+ если $\frac{\alpha}{2}$ в квадранте | или |V

– если $\frac{\alpha}{2}$ в квадранте || или |||

$tg\frac{\alpha}{2}=\pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}$+ если $\frac{\alpha}{2}$ в квадранте | или |||

– если $\frac{\alpha}{2}$ в квадранте || или |V

$\textrm{ ctg }\frac{\alpha}{2}=\pm\sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}}$+ если $\frac{\alpha}{2}$ в квадранте | или |||

– если $\frac{\alpha}{2}$ в квадранте || или |V

$\textrm{ tg }\frac{\alpha}{2} = \frac{\sin\alpha}{1+\cos\alpha} = \frac{1-\cos\alpha}{\sin\alpha}=\csc\alpha-\textrm{ ctg }\alpha$

$\textrm{ ctg }\frac{\alpha}{2} = \frac{\sin\alpha}{1-\cos\alpha} = \frac{1+\cos\alpha}{\sin\alpha}=\csc\alpha+\textrm{ ctg }\alpha$

Формулы двойного, тройного и т.д. угла

$\sin(2u) = 2\sin(u)\cdot \cos(u)$

$\cos(2u) = \cos2(u) – \sin2(u) = 2\cos2(u) – 1 = 1 – 2\sin2(u)$

$\textrm{ tg }(2u) = \frac{2\textrm{ tg }(u)}{1- \textrm{ tg }2(u)}$

$\cos(2u) = \frac{1 – \textrm{ tg }2(u)}{1 + \textrm{ tg }2(u)}$

$\sin(2u) = \frac{2\textrm{ tg }(u)}{1 + \textrm{ tg }2(u)}$

$\sin3\alpha = 3\sin\alpha – 4 \sin3\alpha$

$\cos3\alpha = 4\cos3\alpha – 3 \cos\alpha$

$\textrm{ tg }3\alpha=\frac{3\textrm{ tg }\alpha – \textrm{ tg }3\alpha}{1-3\textrm{ tg }2\alpha}$

$\textrm{ ctg }3\alpha=\frac{\textrm{ ctg }3\alpha-3\textrm{ ctg }\alpha}{3\textrm{ ctg }2\alpha-1}$

$\sin4\alpha = 4\cos3\alpha\sin\alpha – 4\cos\alpha \sin3\alpha$

$\cos4\alpha = \cos4\alpha – 6\cos2\alpha\sin2\alpha + \sin4\alpha$

$\textrm{ tg }4\alpha=\frac{4\textrm{ tg }\alpha – 4\textrm{ tg }3\alpha}{1-6\textrm{ tg }2\alpha+\textrm{ tg }4\alpha}$

$\textrm{ ctg }4\alpha=\frac{\textrm{ ctg }4\alpha-6\textrm{ ctg }2\alpha+1}{4\textrm{ ctg }3\alpha-4\textrm{ ctg }\alpha}$

Формулы суммы и разности тригонометрических функций

$\textrm{ sin } \alpha + \textrm{ sin }\beta = 2 \textrm{ sin }\frac{\alpha + \beta}{2} \textrm{ cos }\frac{\alpha – \beta}{2}$

$\textrm{ sin } \alpha – \textrm{ sin }\beta = 2 \textrm{ sin }\frac{\alpha – \beta}{2} \textrm{ cos }\frac{\alpha + \beta}{2}$

$\textrm{ cos } \alpha + \textrm{ cos }\beta = 2 \textrm{ cos }\frac{\alpha + \beta}{2} \textrm{ cos }\frac{\alpha – \beta}{2}$

$\textrm{ cos } \alpha – \textrm{ cos }\beta = -2 \textrm{ sin }\frac{\alpha + \beta}{2} \textrm{ sin }\frac{\alpha – \beta}{2}$

$\textrm{ tg }\alpha + \textrm{ tg }\beta = \frac{\sin(\alpha+\beta)}{\cos\alpha\cdot\cos\beta}$

$\textrm{ tg }\alpha – \textrm{ tg }\beta = \frac{\sin(\alpha-\beta)}{\cos\alpha\cdot\cos\beta}$

$\textrm{ ctg }\alpha + \textrm{ ctg }\beta = \frac{\sin(\alpha+\beta)}{\sin\alpha\cdot\sin\beta}$

$\textrm{ ctg }\alpha – \textrm{ ctg }\beta = \frac{-\sin(\alpha-\beta)}{\sin\alpha\cdot\sin\beta}$

Формулы произведения

$\textrm{ sin }\alpha \textrm{ sin }\beta = \frac{1}{2} (\textrm{ cos }(\alpha – \beta) – \textrm{ cos }(\alpha + \beta))$

$\textrm{ cos }\alpha \textrm{ cos }\beta = \frac{1}{2} (\textrm{ cos }(\alpha – \beta) + \textrm{ cos }(\alpha + \beta))$

$\textrm{ sin }\alpha \textrm{ cos }\beta = \frac{1}{2} (\textrm{ sin }(\alpha + \beta) + \textrm{ sin }(\alpha – \beta))$

$\textrm{ tg }\alpha\textrm{ tg }\beta = \frac{\textrm{ tg }\alpha+\textrm{ tg }\beta}{\textrm{ ctg }\alpha+\textrm{ ctg }\beta}=-\frac{\textrm{ tg }\alpha-\textrm{ tg }\beta}{\textrm{ ctg }\alpha-\textrm{ ctg }\beta}$

$\textrm{ ctg }\alpha\textrm{ ctg }\beta = \frac{\textrm{ ctg }\alpha+\textrm{ ctg }\beta}{\textrm{ tg }\alpha+\textrm{ tg }\beta}$

$\textrm{ tg }\alpha\textrm{ ctg }\beta = \frac{\textrm{ tg }\alpha+\textrm{ ctg }\beta}{\textrm{ ctg }\alpha+\textrm{ tg }\beta}$

$\sin\alpha\sin\beta\sin\gamma = \frac{1}{4}\big(\sin(\alpha+\beta-\gamma)+\sin(\beta+\gamma-\alpha)+\sin(\gamma+\alpha-\beta)-\sin(\alpha+\beta+\gamma)\big)$

$\cos\alpha\cos\beta\cos\gamma = \frac{1}{4}\big(\cos(\alpha+\beta-\gamma)+\cos(\beta+\gamma-\alpha)+\cos(\gamma+\alpha-\beta)+\cos(\alpha+\beta+\gamma)\big)$

$\sin\alpha\sin\beta\cos\gamma = \frac{1}{4}\big(-\cos(\alpha+\beta-\gamma)+\cos(\beta+\gamma-\alpha)+\cos(\gamma+\alpha-\beta)-\cos(\alpha+\beta+\gamma)\big)$

$\sin\alpha\cos\beta\cos\gamma = \frac{1}{4}\big(\sin(\alpha+\beta-\gamma)-\sin(\beta+\gamma-\alpha)+\sin(\gamma+\alpha-\beta)+\sin(\alpha+\beta+\gamma)\big)$

Универсальная тригонометрическая подстановка

$\sin\alpha = \frac{2\textrm{tg}\frac{\alpha}{2}}{1+\textrm{tg}2\frac{\alpha}{2}}$

$\cos\alpha = \frac{1-\textrm{tg}2\frac{\alpha}{2}}{1+\textrm{tg}2\frac{\alpha}{2}}$

$\textrm{tg}\alpha = \frac{2\textrm{tg}\frac{\alpha}{2}}{1-\textrm{tg}2\frac{\alpha}{2}}$

$\textrm{ctg}\alpha = \frac{1-\textrm{tg}2\frac{\alpha}{2}}{2\textrm{tg}\frac{\alpha}{2}}$

Другие формулы

$1\pm\sin\alpha=2\sin2\big(\frac{\pi}{4}\pm \frac{\alpha}{2}\big)=2\cos2\big(\frac{\pi}{4}\mp \frac{\alpha}{2}\big)$

$\frac{1-\sin\alpha}{1+\sin\alpha} = \textrm{ tg }2(\frac{\pi}{4}-\frac{\alpha}{2})$

$\frac{1-\cos\alpha}{1+\cos\alpha} = \textrm{ tg }2\frac{\alpha}{2}$

$\frac{1-\textrm{ tg }\alpha}{1+\textrm{ tg }\alpha} = \textrm{ tg }(\frac{\pi}{4}-\alpha)$

$\frac{1+\textrm{ tg }\alpha}{1-\textrm{ tg }\alpha} = \textrm{ tg }(\frac{\pi}{4}+\alpha)$

$\frac{\textrm{ ctg }\alpha + 1}{\textrm{ ctg }\alpha – 1} = \textrm{ ctg }(\frac{\pi}{4}-\alpha)$

$\textrm{ tg }\alpha + \textrm{ ctg }\alpha = \frac{2}{\sin2\alpha}$

$\textrm{ tg }\alpha – \textrm{ ctg }\alpha = -2\textrm{ ctg }2\alpha$

Тригонометрия на страницах математического форума

Для участия в математическом форуме регистрация не требуется!

Источник: https://www.math10.com/ru/algebra/trigonometriya.html

Синус, косинус, тангенс и котангенс: определения в тригонометрии, примеры, формулы

Правило синусов косинусов тангенсов

Тригонометрия – раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии. 

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии. 

Синус, косинус, тангенс и котангенс. Определения

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Синус угла (sin α) – отношение противолежащего этому углу катета к гипотенузе.

Косинус угла (cosα) – отношение прилежащего катета к гипотенузе.

Тангенс угла (tg α) – отношение противолежащего катета к прилежащему.

Котангенс угла (ctg α) – отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

Приведем иллюстрацию. 

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Важно помнить!

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса – вся числовая прямая, то есть эти функции могут принимать любые значения.

Угол поворота

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от -∞ до +∞. 

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

Начальная точка A с координатами (1, 0) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A1. Определение дается через координаты точки A1(x , y). 

Синус (sin) угла поворота

Синус угла поворота α – это ордината точки A1(x , y). sin α=y

Косинус (cos) угла поворота

Косинус угла поворота α – это абсцисса точки A1(x , y). cos α=х

Тангенс (tg) угла поворота

Тангенс угла поворота α – это отношение ординаты точки A1(x , y) к ее абсциссе. tg α=yx

Котангенс (ctg) угла поворота

Котангенс угла поворота α – это отношение абсциссы точки A1(x , y) к ее ординате. ctg α=xy

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом.

Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой (0, 1) и (0, -1). В таких случаях выражение для тангенса tg α=yx просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогично ситуация с котангенсом.

 Отличием состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Важно помнить!

Синус и косинус определены для любых углов α.

Тангенс определен для всех углов, кроме α=90°+180°·k, k∈Z (α=π2+π·k, k∈Z)

Котангенс определен для всех углов, кроме α=180°·k, k∈Z (α=π·k, k∈Z)

При решении практических примеров не говорят “синус угла поворота α”. Слова “угол поворота” просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь. 

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в радиан.

Например, синус числа 10π равен синусу угла поворота величиной 10π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Начальная точка на окружности – точка A c координатами (1, 0).

Положительному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t.

Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t.

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Синус (sin) числа t

Синус числа t – ордината точки единичной окружности, соответствующей числу t. sin t=y

Косинус (cos) числа t

Косинус числа t – абсцисса точки единичной окружности, соответствующей числу t. cos t=x

Тангенс (tg) числа t

Тангенс числа t – отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. tg t=yx=sin tcos t

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол радиан.

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α, отличным от α = 90 ° + 180 ° · k ,   k ∈ Z   ( α = π 2 + π · k ,   k ∈ Z ) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α, кроме α = 180 ° · k ,   k ∈ Z   ( α = π · k ,   k ∈ Z ). 

Можно сказать, что sin α, cos α, tg α, ctg α – это функции угла альфа, или функции углового аргумента. 

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу соответствует определенное значение синуса или косинуса числа t. Всем числам, отличным от π 2 + π · k ,   k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k ,   k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс – основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело. 

Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью  соотношений сторон прямоугольного треугольника. Покажем это.

Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A(1,0) на угол величиной до 90 градусов и проведем из полученной точки A1(x,y) перпендикуляр к оси абсцисс.

В полученном прямоугольном треугольнике угол A1OH равен углу поворота α, длина катета OH равна абсциссе точки A1(x,y).

Длина катета, противолежащего углу, равна ординате точки A1(x,y), а длина гипотенузы равна единице, так как она является радиусом единичной окружности. 

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе. 

sin α=A1HOA1=y1=y

Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α, при альфа лежащем в пределах от 0 до 90 градусов.

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Синус, косинус, тангенс и котангенс: основные формулы

Источник: https://Zaochnik.com/spravochnik/matematika/trigonometrija/sinus-kosinus-tangens-i-kotangens/

Тригонометрия: синус, косинус, тангенс, котангенс

Правило синусов косинусов тангенсов

Тригонометрия, как наука, зародилась на Древнем Востоке. Первые тригонометрические соотношения были выведены астрономами для создания точного календаря и ориентированию по звездам. Данные вычисления относились к сферической тригонометрии, в то время как в школьном курсе изучают соотношения сторон и угла плоского треугольника.

Тригонометрия – это раздел математики, занимающийся свойствами тригонометрических функций и зависимостью между сторонами и углами треугольников.

В период расцвета культуры и науки I тысячелетия нашей эры знания распространились с Древнего Востока в Грецию. Но основные открытия тригонометрии – это заслуга мужей арабского халифата.

В частности, туркменский ученый аль-Маразви ввел такие функции, как тангенс и котангенс, составил первые таблицы значений для синусов, тангенсов и котангенсов. Понятие синуса и косинуса введены индийскими учеными.

Тригонометрии посвящено немало внимания в трудах таких великих деятелей древности, как Евклида, Архимеда и Эратосфена.

Основные величины тригонометрии

Основные тригонометрические функции числового аргумента – это синус, косинус, тангенс и котангенс. Каждая из них имеет свой график: синусоида, косинусоида, тангенсоида и котангенсоида.

В основе формул для расчета значений указанных величин лежит теорема Пифагора. Школьникам она больше известна в формулировке: «Пифагоровы штаны, во все стороны равны», так как доказательство приводится на примере равнобедренного прямоугольного треугольника.

Синус, косинус и другие зависимости устанавливают связь между острыми углами и сторонами любого прямоугольного треугольника. Приведем формулы для расчета этих величин для угла A и проследим взаимосвязи тригонометрических функций:

Как видно, tg и ctg являются обратными функциями. Если представить катет a как произведение sin A и гипотенузы с, а катет b в виде cos A * c, то получим следующие формулы для тангенса и котангенса:

Тригонометрический круг

Графически соотношение упомянутых величин можно представить следующим образом:

Окружность, в данном случае, представляет собой все возможные значения угла α — от 0° до 360°. Как видно из рисунка, каждая функция принимает отрицательное или положительное значение в зависимости от величины угла.

Например, sin α будет со знаком «+», если α принадлежит I и II четверти окружности, то есть, находится в промежутке от 0° до 180°. При α от 180° до 360° (III и IV четверти) sin α может быть только отрицательным значением.

Попробуем построить тригонометрические таблицы для конкретных углов и узнать значение величин.

Значения α равные 30°, 45°, 60°, 90°, 180° и так далее – называют частными случаями. Значения тригонометрических функций для них просчитаны и представлены в виде специальных таблиц.

Данные углы выбраны отнюдь не случайно. Обозначение π  в таблицах стоит для радиан. Рад  — это угол, при котором длина дуги окружности соответствует ее радиусу. Данная величина была введена для того, чтобы установить универсальную зависимость, при расчетах в радианах не имеет значение действительная длина радиуса в см.

Углы в таблицах для тригонометрических функций соответствуют значениям радиан:

Итак, не трудно догадаться, что 2π – это полная окружность или 360°.

Свойства тригонометрических функций: синус и косинус

Для того, чтобы рассмотреть и сравнить основные свойства синуса и косинуса, тангенса и котангенса, необходимо начертить их функции. Сделать это можно в виде кривой, расположенной в двумерной системе координат.

Рассмотри сравнительную таблицу свойств для синусоиды и косинусоиды:

СинусоидаКосинусоида
y = sin xy = cos x
ОДЗ [-1; 1]ОДЗ [-1; 1]
sin x = 0, при x = πk, где k ϵ Zcos x = 0, при x = π/2 + πk, где k ϵ Z
sin x = 1, при x = π/2 + 2πk, где k ϵ Zcos x = 1, при x = 2πk, где k ϵ Z
sin x = – 1, при x = 3π/2 + 2πk, где k ϵ Zcos x = – 1, при x = π + 2πk, где k ϵ Z
sin (-x) = – sin x, т. е. функция нечетнаяcos (-x) = cos x, т. е. функция четная
функция периодическая, наименьший период – 2πфункция периодическая, наименьший период – 2π
sin x › 0, при x принадлежащем I и II четвертям или от 0° до 180° (2πk, π + 2πk)cos x › 0, при x принадлежащем I и IV четвертям или от 270° до 90° (- π/2 + 2πk, π/2 + 2πk)
sin x ‹ 0, при x принадлежащем III и IV четвертям или от 180° до 360° (π + 2πk, 2π + 2πk)cos x ‹ 0, при x принадлежащем II и III четвертям или от 90° до 270° (π/2 + 2πk, 3π/2 + 2πk)
возрастает на промежутке [- π/2 + 2πk, π/2 + 2πk]возрастает на промежутке [-π + 2πk, 2πk]
убывает на промежутках [ π/2 + 2πk, 3π/2 + 2πk]убывает на промежутках [2πk, π + 2πk]
производная (sin x)’ = cos xпроизводная (cos x)’ = – sin x

Определить является ли функция четной или нет очень просто. Достаточно представить тригонометрический круг со знаками тригонометрических величин и мысленно «сложить» график относительно оси OX. Если знаки совпадают, функция четная, в противном случае — нечетная.

Введение радиан и перечисление основных свойств синусоиды и косинусоиды позволяют привести следующую закономерность:

Убедиться в верности формулы очень просто. Например, для x =  π/2 синус равен 1, как и косинус x = 0. Проверку можно осуществить обративших к таблицам или проследив кривые функций для заданных значений.

Свойства тангенсоиды и котангенсоиды

Графики функций тангенса и котангенса значительно отличаются от синусоиды и косинусоиды. Величины tg и ctg являются обратными друг другу.

Основные свойства котангенсоиды:

  1. Y = tg x.
  2. В отличие от функций синуса и косинуса, в тангенсоиде Y может принимать значения множества всех действительных чисел.
  3. Тангенсоида стремится к значениям y при x = π/2 + πk, но никогда не достигает их.
  4. Наименьший положительный период тангенсоиды равен π.
  5. Tg (- x) = — tg x, т. е. функция нечетная.
  6. Tg x = 0, при x = πk.
  7. Функция является возрастающей.
  8. Tg x › 0, при x ϵ (πk, π/2 + πk).
  9. Tg x ‹ 0, при x ϵ ( — π/2 + πk, πk).
  10. Производная (tg x)’ = 1/cos2⁡x .

Рассмотрим графическое изображение котангенсоиды ниже по тексту.

Основные свойства котангенсоиды:

  1. Y = ctg x.
  2. В отличие от функций синуса и косинуса, в тангенсоиде Y может принимать значения множества всех действительных чисел.
  3. Котангенсоида стремится к значениям y при x = πk, но никогда не достигает их.
  4. Наименьший положительный период котангенсоиды равен π.
  5. Ctg (- x) = — ctg x, т. е. функция нечетная.
  6. Ctg x = 0, при x = π/2 + πk.
  7. Функция является убывающей.
  8. Ctg x › 0, при x ϵ (πk, π/2 + πk).
  9. Ctg x ‹ 0, при x ϵ (π/2 + πk, πk).
  10. Производная (ctg x)’ = — 1/sin2⁡x Исправить

Источник: https://karate-ege.ru/matematika/trigonometriya-sinus-kosinus-tangens-kotangens.html

По закону
Добавить комментарий