Правила умножения и деления чисел в степени

Сложение, вычитание, умножение, и деление степеней

Правила умножения и деления чисел в степени

Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками.

Так, сумма a3 и b2 есть a3 + b2.
Сумма a3 – bn и h5 -d4 есть a3 – bn + h5 – d4.

Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.

Так, сумма 2a2 и 3a2 равна 5a2.

Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.

Но степени различных переменных и различные степениодинаковых переменных, должны слагаться их сложением с их знаками.

Так, сумма a2 и a3 есть сумма a2 + a3.

Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.

Сумма a3bn и 3a5b6 есть a3bn + 3a5b6.

Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.

Из2a43h2b65(a – h)6
Вычитаем-6a44h2b62(a – h)6
Результат8a4-h2b63(a – h)6

Или:
2a4 – (-6a4) = 8a4
3h2b6 – 4h2b6 = -h2b6
5(a – h)6 – 2(a – h)6 = 3(a – h)6

Умножение степеней

Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.

Так, результат умножения a3 на b2 равен a3b2 или aaabb.

Первый множительx-33a6y2a2b3y2
Второй множительam-2xa3b2y
Результатamx-3-6a6xy2a2b3y2a3b2y

Или:
x-3 ⋅ am = amx-3
3a6y2 ⋅ (-2x) = -6a6xy2
a2b3y2 ⋅ a3b2y = a2b3y2a3b2y

Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
Выражение примет вид: a5b5y3.

Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат – это число (переменная) со степенью, равной сумме степеней слагаемых.

Так, a2.a3 = aa.aaa = aaaaa = a5.

Здесь 5 – это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.

Так, an.am = am+n.

Для an, a берётся как множитель столько раз, сколько равна степень n;

И am, берётся как множитель столько раз, сколько равна степень m;

Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.

Так, a2.a6 = a2+6 = a8. И x3.x2.x = x3+2+1 = x6.

Первый множитель4anb2y3(b + h – y)n
Второй множитель2anb4y(b + h – y)
Результат8a2nb6y4(b + h – y)n+1

Или:
4an ⋅ 2an = 8a2n
b2y3 ⋅ b4y = b6y4
(b + h – y)n ⋅ (b + h – y) = (b + h – y)n+1

Умножьте (x3 + x2y + xy2 + y3) ⋅ (x – y).
Ответ: x4 – y4.
Умножьте (x3 + x – 5) ⋅ (2×3 + x + 1).

Это правило справедливо и для чисел, показатели степени которых – отрицательные.

1. Так, a-2.a-3 = a-5. Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.

2. y-n.y-m = y-n-m.

3. a-n.am = am-n.

Если a + b умножаются на a – b, результат будет равен a2 – b2: то есть

Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.

Если умножается сумма и разница двух чисел, возведённых в квадрат, результат будет равен сумме или разнице этих чисел в четвёртой степени.

Так, (a – y).(a + y) = a2 – y2.
(a2 – y2)⋅(a2 + y2) = a4 – y4.
(a4 – y4)⋅(a4 + y4) = a8 – y8.

Деление степеней

Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.

Таким образом a3b2 делённое на b2, равно a3.

Делимое9a3y4a2b + 3a2d⋅(a – h + y)3
Делитель-3a3a2(a – h + y)3
Результат-3y4b + 3d

Или:$\frac{9a3y4}{-3a3} = -3y4$$\frac{a2b + 3a2}{a2} = \frac{a2(b+3)}{a2} = b + 3$

$\frac{d\cdot (a – h + y)3}{(a – h + y)3} = d$

Запись a5, делённого на a3, выглядит как $\frac{a5}{a3}$. Но это равно a2. В ряде чисел
a+4, a+3, a+2, a+1, a0, a-1, a-2, a-3, a-4.
любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.

При делении степеней с одинаковым основанием их показатели вычитаются..

Так, y3:y2 = y3-2 = y1. То есть, $\frac{yyy}{yy} = y$.

И an+1:a = an+1-1 = an. То есть $\frac{aan}{a} = an$.

Делимоеy2m8an+m12(b + y)n
Делительym4am3(b + y)3
Результатym2an4(b +y)n-3

Или:
y2m : ym = ym
8an+m : 4am = 2an
12(b + y)n : 3(b + y)3 = 4(b +y)n-3

Правило также справедливо и для чисел с отрицательными значениями степеней.
Результат деления a-5 на a-3, равен a-2.
Также, $\frac{1}{aaaaa} : \frac{1}{aaa} = \frac{1}{aaaaa}.\frac{aaa}{1} = \frac{aaa}{aaaaa} = \frac{1}{aa}$.

h2:h-1 = h2+1 = h3 или $h2:\frac{1}{h} = h2.\frac{h}{1} = h3$

Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.

Примеры решения примеров с дробями, содержащими числа со степенями

1. Уменьшите показатели степеней в $\frac{5a4}{3a2}$ Ответ: $\frac{5a2}{3}$.

2. Уменьшите показатели степеней в $\frac{6×6}{3×5}$. Ответ: $\frac{2x}{1}$ или 2x.

3. Уменьшите показатели степеней a2/a3 и a-3/a-4 и приведите к общему знаменателю.
a2.a-4 есть a-2 первый числитель.
a3.a-3 есть a0 = 1, второй числитель.
a3.a-4 есть a-1, общий числитель.
После упрощения: a-2/a-1 и 1/a-1.

4. Уменьшите показатели степеней 2a4/5a3 и 2/a4 и приведите к общему знаменателю.
Ответ: 2a3/5a7 и 5a5/5a7 или 2a3/5a2 и 5/5a2.

5. Умножьте (a3 + b)/b4 на (a – b)/3.

6. Умножьте (a5 + 1)/x2 на (b2 – 1)/(x + a).

7. Умножьте b4/a-2 на h-3/x и an/y-3.

8. Разделите a4/y3 на a3/y2. Ответ: a/y.

9. Разделите (h3 – 1)/d4 на (dn + 1)/h.

Источник: https://www.math10.com/ru/algebra/slogenie-vichitanie-umnozhenie-delenie-stepeney.html

Действия с одночленами

Правила умножения и деления чисел в степени

В предыдущей статье мы рассказали, что из себя представляют одночлены. В этом материале разберем, как решать примеры и задачи, в которых они применяются.

Здесь будут рассмотрены такие действия, как вычитание, сложение, умножение, деление одночленов и возведение их в степень с натуральным показателем.

Мы покажем, как определяются такие операции, обозначим основные правила их выполнения и то, что должно получится в результате. Все теоретические положения, как обычно, будут проиллюстрированы примерами задач с описаниями решений.

Удобнее всего работать со стандартной записью одночленов, поэтому все выражения, которые будут использованы в статье, мы приводим в стандартном виде. Если изначально они заданы иначе, рекомендуется сначала привести их к общепринятой форме.

Правила сложения и вычитания одночленов

Наиболее простые действия, которые можно проводить с одночленами – это вычитание и сложение. В общем случае результатом этих действий будет являться многочлен (одночлен возможен в некоторых частных случаях).

Когда мы складываем или вычитаем одночлены, сначала записываем в общепринятой форме соответствующую сумму и разность, после чего упрощаем получившееся выражение. Если есть подобные слагаемые, их нужно привести, скобки – раскрыть. Поясним на примере.

Пример 1

Условие: выполните сложение одночленов −3·x  и 2,72·x3·y5·z.

Решение

Запишем сумму исходных выражений. Добавим скобки и поставим между ними плюс. У нас получится следующее:

(−3·x)+(2,72·x3·y5·z)

Когда мы выполним раскрытие скобок, получится -3·x+2,72·x3·y5·z. Это многочлен, записанный в стандартной форме, который и будет результатом сложения данных одночленов.

Ответ: (−3·x)+(2,72·x3·y5·z)=−3·x+2,72·x3·y5·z.

Если у нас задано три, четыре и больше слагаемых, мы осуществляем это действие точно так же.

Пример 2

Условие: проведите в правильном порядке указанные действия с многочленами

3·a2-(-4·a·c)+a2-7·a2+49-223·a·c

Решение

Начнем с раскрытия скобок.

3·a2+4·a·c+a2-7·a2+49-223·a·c

Мы видим, что полученное выражение можно упростить путем приведения подобных слагаемых:

3·a2+4·a·c+a2-7·a2+49-223·a·c==(3·a2+a2-7·a2)+4·a·c-223·a·c+49==-3·a2+113·a·c+49

У нас получился многочлен, который и будет результатом данного действия.

Ответ: 3·a2-(-4·a·c)+a2-7·a2+49-223·a·c=-3·a2+113·a·c+49

В принципе, мы можем выполнить сложение и вычитание двух одночленов с некоторыми ограничениями так, чтобы получить в итоге одночлен. Для этого нужно соблюсти некоторые условия, касающиеся слагаемых и вычитаемых одночленов. О том, как это делается, мы расскажем в отдельной статье.

Правила умножения одночленов

Действие умножения не налагает никаких ограничений на множители. Умножаемые одночлены не должны соответствовать никаким дополнительным условиям, чтобы в результате получится одночлен.

Чтобы выполнить умножение одночленов, нужно выполнить следующие шаги:

  1. Правильно записать произведение.
  2. Раскрыть скобки в полученном выражении.
  3. Сгруппировать по возможности множители с одинаковыми переменными и числовые множители отдельно.
  4. Выполнить необходимые действия с числами и применить к оставшимся множителям свойство умножения степеней с одинаковыми основаниями.

Посмотрим, как это делается на практике.

Пример 3

Условие: выполните умножение одночленов 2·x4·y·z  и -716·t2·x2·z11 .

Решение

Начнем с составления произведения.

2·x4·y·z·-716·t2·x2·z11

Раскрываем в нем скобки и получаем следующее:

2·x4·y·z·-716·t2·x2·z11

Далее нам нужно объединить числовые множители в одну группу, а потом сгруппировать множители с одинаковыми переменными:

2·-716·t2·x4·x2·y·z3·z11

Все, что нам осталось сделать – это умножить числа в первых скобках и применить свойство степеней для вторых. В итоге получим следующее:

2·-716·t2·x4·x2·y·z3·z11=-78·t2·x4+2·y·z3+11==-78·t2·x6·y·z14

Ответ: 2·x4·y·z·-716·t2·x2·z11=-78·t2·x6·y·z14 .

Если у нас в условии стоят три многочлена и больше, мы умножаем их по точно такому же алгоритму. Более подробно вопрос умножения одночленов мы рассмотрим в рамках отдельного материала.

Правила возведения одночлена в степень

Мы знаем, что степенью с натуральным показателем называют произведение некоторого числа одинаковых множителей. На их количество указывает число в показателе. Согласно этому определению, возведение одночлена в степень равнозначно умножению указанного числа одинаковых одночленов. Посмотрим, как это делается.

Пример 4

Условие: выполните возведение одночлена −2·a·b4  в степень 3.

Решение

Мы можем заменить возведение в степень на умножение 3-х одночленов −2·a·b4. Запишем и получим нужный ответ:

 (−2·a·b4)3=(−2·a·b4)·(−2·a·b4)·(−2·a·b4)==((−2)·(−2)·(−2))·(a· a· a)·(b4·b4·b4)=−8·a3·b12

Ответ: (−2·a·b4)3=−8·a3·b12.

А как быть в том случае, когда степень имеет большой показатель? Записывать большое количество множителей неудобно. Тогда для решения такой задачи нам надо применить свойства степени, а именно свойство степени произведения и свойство степени в степени.

Решим задачу, которую мы привели выше, указанным способом.

Пример 5

Условие: выполните возведение −2·a·b4 в третью степень.

Решение

Зная свойство степени в степени, мы можем перейти к выражению следующего вида:

(−2·a·b4)3=(−2)3·a3·(b4)3.

После этого мы возводим в степень -2 и применяем свойство степени в степени:

(−2)3·(a)3·(b4)3=−8·a3·b4·3=−8·a3·b12.

Ответ: −2·a·b4=−8·a3·b12.

Возведению одночлена в степень мы также посвятили отдельную статью.

Правила деления одночленов

Последнее действие с одночленами, которое мы разберем в данном материале, – деление одночлена на одночлен. В результате мы должны получить рациональную (алгебраическую) дробь (в некоторых случаях возможно получение одночлена). Сразу уточним, что деление на нулевой одночлен не определяется, поскольку не определяется деление на 0.

Для выполнения деления нам нужно записать указанные одночлены в форме дроби и сократить ее, если есть такая возможность.

Пример 6

Условие: выполните деление одночлена −9·x4·y3·z7  на −6·p3·t5·x2·y2.

Решение

Начнем с записи одночленов в форме дроби.

-9·x4·y3·z7-6·p3·t5·x2·y2

Эту дробь можно сократить. После выполнения этого действия получим:

3·x2·y·z72·p3·t5

Ответ: -9·x4·y3·z7-6·p3·t5·x2·y2=3·x2·y·z72·p3·t5.

Условия, при которых в результате деления одночленов мы получим одночлен, приводятся в отдельной статье.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/matematika/vyrazhenija/dejstvija-s-odnochlenami/

Свойства степени

Правила умножения и деления чисел в степени
Что такое степень числа Свойства степени Возведение в степень дроби

Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.

Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.

Свойство № 1
Произведение степеней

Запомните!

При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.

am · an = am + n, где «a» — любое число, а «m», «n» — любые натуральные числа.

Данное свойство степеней также действует на произведение трёх и более степеней.

Примеры.

  • Упростить выражение. b · b2 · b3 · b4 · b5 = b 1 + 2 + 3 + 4 + 5 = b15
  • Представить в виде степени. 615 · 36 = 615 · 62 = 615 · 62 = 617
  • Представить в виде степени. (0,8)3 · (0,8)12 = (0,8)3 + 12 = (0,8)15

Важно!

Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями. Оно не относится к их сложению.

Нельзя заменять сумму (33 + 32) на 35. Это понятно, если
посчитать (33 + 32) = (27 + 9) = 36 , а 35 = 243

Свойство № 2
Частное степеней

Запомните!

При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

= am − n, где «a» — любое число, не равное нулю, а «m», «n» — любые натуральные числа такие, что «m > n».

Примеры.

  • Записать частное в виде степени (2b)5 : (2b)3 = (2b)5 − 3 = (2b)2
  • Вычислить. = 113 − 2 · 4 2 − 1 = 11 · 4 = 44
  • Пример. Решить уравнение. Используем свойство частного степеней. 38 : t = 34t = 38 : 34t = 38 − 4t = 34 Ответ: t = 34 = 81

Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.

  • Пример. Упростить выражение. 45m + 6 · 4m + 2 : 44m + 3 = 45m + 6 + m + 2 : 44m + 3 = 46m + 8 − 4m − 3 = 42m + 5
  • Пример. Найти значение выражения, используя свойства степени. = = = = = 211 − 5 = 2 6 = 64

Важно!

Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.

Нельзя заменять разность (43 −42) на 41. Это понятно, если посчитать (43 −42) = (64 − 16) = 48, а 41 = 4

Будьте внимательны!

Запомните!

При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.

(an)m = an · m, где «a» — любое число, а «m», «n» — любые натуральные числа.

  • Пример. (a4)6 = a4 · 6 = a24
  • Пример. Представить 320 в виде степени с основанием 32.По свойству возведения степени в степень известно, что при возведении в степень показатели перемножаются, значит:

Запомните!

При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.

(a · b)n = an · bn, где «a», «b» — любые рациональные числа; «n» — любое натуральное число.

  • Пример 1. (6 · a2 · b3 · c )2 = 62 · a2 · 2 · b3 · 2 · с 1 · 2 = 36 a4 · b6 · с 2
  • Пример 2. (−x2 · y)6 = ( (−1)6 · x2 · 6 · y1 · 6) = x12 · y6

Важно!

Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.

(an · bn)= (a · b) n

То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.

  • Пример. Вычислить. 24 · 54 = (2 · 5)4 = 104 = 10 000
  • Пример. Вычислить. 0,516 · 216 = (0,5 · 2)16 = 1

В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.

Например, 45 · 32 = 43 · 42 · 32 = 43 · (4 · 3)2 = 64 · 122 = 64 · 144 = 9216

Пример возведения в степень десятичной дроби.

421 · (−0,25)20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25))20 = 4 · (−1)20 = 4 · 1 = 4 Запомните!

Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

(a : b)n = an : bn, где «a», «b» — любые рациональные числа, b ≠ 0, n — любое натуральное число.

  • Пример. Представить выражение в виде частного степеней. (5 : 3)12 = 512 : 312

Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.

Источник: http://math-prosto.ru/?page=pages%2Fstepeni%2Fstepeni2.php

Правила умножения и деления для начальной школы примеры

Правила умножения и деления чисел в степени

После того, как выучена таблица умножения, школьникам объясняют правила умножения и деления, учат использовать их при вычислении математических выражений.

Что такое умножение? Это умное сложение

При сложении и вычитании, умножении и делении чисел в простых выражениях у детей не возникает трудностей:

  • 5 × 3 = 15;
  • 86 – 9 = 77;
  • 81 : 9 = 9.

В таких вычислениях необходимо только знать правила сложения и вычитания и таблицу умножения.
Когда начинаются более сложные упражнения, примеры состоят из двух и более действий, да еще и со скобками, при решении у детей появляются ошибки. И главная из них – неправильный порядок действий.

Математика: переместительное свойство умножения

Да какая разница?

Действительно, настолько ли это важно – какое действие в примере выполнить первым, какое вторым?

10 – 5 + 2 = ?

Если мы будем выполнять действия по порядку, получим:

Попробуем иначе:

Получили два разных ответа. Но так быть не должно, следовательно, порядок выполнения действий имеет значение. Тем более, если в выражении имеются скобки:

25 – (18+2) = ?

Пробуем решить двумя способами:

  1. 25 – 18 + 2 = 9;
  2. 25 – 20 = 5.

Ответы разные, а для того чтобы определить порядок действий, в выражении стоят скобки – они показывают, какое действие нужно выполнить первым. Значит, правильным будет такое решение:

  1. 18 + 2 = 20;
  2. 25 – 20 = 5.

Другого решения у ответа у примера быть не должно.

Итак:

Что важнее – умножение или сложение?

При решении примеров
Расставь порядок действий.
Умножить или разделить – на первом месте.

Для выражений, в которых присутствуют не сложение либо вычитание, а умножение или деление, действует то же правило: все действия с числами выполняются по порядку, начиная с левого:

81 : 9 х 2 = ?

Сложнее случай – когда в одной задаче встречаются умножение или деление со сложением или вычитанием. Каков порядок вычислений тогда?

Рассмотрим пример:

8 : 2 + 2 = ?

Если выполнять все действия по порядку, сначала деление, затем сложение. В итоге получим:

Значит, пример решен правильно. А если в нем будут скобки?

8 : (2 + 2) = ?

То, что заключено в скобки, всегда в приоритете. Для того они и стоят в выражении. Поэтому порядок вычислений в подобных выражениях будет следующим:

  1. Раскрываем скобки. Если их несколько, делаем вычисления для каждых.
  2. Умножение либо деление.
  3. Вычисляем конечный результат, выполняя действия слева направо.

Пример:
81 : 9 + (6 – 2) + 3 = ?

  1. 6 – 2 = 4;
  2. 81 : 9 = 9;
  3. 9 + 4 = 13;
  4. 13 + 3 = 16.

81 : 9 + (6 – 2) + 3 = 16.

А что будет приоритетным: умножение — или деление, вычитание — или сложение, если оба действия встречаются в задаче? Ничего, они равны, в таком случае действует первое правило – действия производятся одно за другим, начиная слева.

Алгоритм решения выражения:

  1. Анализируем задачу – есть ли скобки, какие математические действия нужно будет выполнить.
  2. Выполняем вычисления в скобках.
  3. Делаем умножение и деление.
  4. Выполняем сложение и вычитание.

Пример:

28 : (11 – 4) + 18 – (25 – 8) = ?

Порядок вычисления:

  1. 11 – 4 = 7;
  2. 25 – 8 = 17;
  3. 28 : 7 = 4;
  4. 4 + 18 = 22;
  5. 22 – 17 = 5.

Ответ: 28 : (11 – 4) + 18 – (25 – 8) = 5.

Важно! Если в выражении есть буквенные обозначения, порядок действий остается прежним.

Математические действия с нулем

Круглый нуль такой хорошенький,
Но не значит ничегошеньки.

В примерах нуль как число не встречается, но он может быть результатом какого-либо промежуточного действия, например:

5 × (8 : 2 – 4) = ?

  1. 8 : 2 = 4;
  2. 4 – 4 = 0;
  3. 5 × 0 = ?

При умножении на 0 правило гласит, что в результате всегда получится 0. Почему? Объяснить можно просто: что такое умножение? Это одно и то же число, сложенное с себе подобным несколько раз. Иначе:

0 × 5 = 0 + 0 + 0 + 0 + 0 = 0;

Деление на 0 бессмысленно, а деление нуля на любое число даст в результате всегда 0:

0 : 5 = 0.

Да и как может быть иначе, когда делить-то нечего? Если у вас нет яблок, поделиться с друзьями вам нечем.

Почему нельзя делить на ноль

Напомним другие арифметические действия с нулем:

Умножение и деление на единицу

Математические действия с единицей отличаются от действий с нулем. При умножении или делении числа на 1 получается само первоначальное число:

7 × 1 = 7;

7 : 1 = 7.

Конечно, если у вас есть 7 друзей, и каждый подарил вам по конфете, у вас будет 7 конфет, а если вы их съели в одиночестве, то есть поделились лишь с самим собой, то все они и оказались в вашем желудке.

Вычисления с дробями, степенями и сложными функциями

Это сложные случаи вычислений, которые не рассматриваются в рамках начальной школы.

Умножение простых дробей друг на друга не представляется сложными, достаточно лишь перемножить числитель на числитель, а знаменатель – на знаменатель.
Пример:

\({{2}\over{5}} × {{3}\over{8}}\) = ?

  1. 2 × 3 = 6 — числитель
  2. 5 × 8 = 40 — знаменатель

\({{2}\over{5}} × {{3}over\{8}} = {{6}over\{40}}\)

После сокращения получаем:\({{6}over\{40}}\) = \({{3}over\{20}}\).

Деление простых дробей не так сложно, как кажется на первый взгляд. Достаточно лишь преобразовать задачу – превратить ее в пример с умножением. Сделать это просто – нужно перевернуть дробь так, чтобы знаменатель стал числителем, а числитель – знаменателем.
Пример:

\({{2}\over{8}}={{2}\over{5}} : {{3}\over{5}}\)=?\({{2}\over{8}} : {{3}\over{5}} = {{2}\over{8}} × {{5}\over{3}}\) \({{2}\over{8}} : {{3}\over{5}} = {{10}\over{24}}={{5}\over{12}}\)

Если в задаче встречается число, представленное в виде степени, его значение вычисляется прежде всех остальных (можете представить, что оно заключено в скобки – а действия в скобках выполняются первыми).
Пример:

(5² – 7) : 3 = ?

  1. 5² = 5 х 5 = 25;
  2. 25 – 7 = 18;
  3. 18 : 3 = 6.

(5² – 7) : 3 = 6.

Преобразовав число, представленное в виде степени, в обычное выражение с действием умножения, решить пример оказалось просто: сначала умножение, затем вычитание (потому что в скобках) и деление.

  • Действия с корнями, логарифмами, функциями

Поскольку такие функции изучаются только в рамках старшей школы, рассматривать их мы не будем, достаточно только сказать, что они, как и в случае со степенями, имеют приоритет при вычислении: сначала находится значение данного выражения, затем порядок вычислений обычный – скобки, умножение с делением, далее по порядку слева направо.

Главные правила по теме

Говоря о главных и неглавных математических действиях, нужно сказать, что четыре основных действия можно свести к двум: сложение и умножение. Если вычитание и деление представляется для школьников сложным, правила сложения и умножения они запоминают быстрее. Действительно, выражение 5 – 2 можно записать иначе:

2 + х = 5.

Аналогично:

8 : 2 = у × 2 = 8.

В случаях с умножением действуют правила, схожие со свойствами сложения: от перестановки множителей произведение не изменится:

5 × 4 = 4 × 5.

При решении сложных задач первое действие — то, которое выделено скобками, затем — деление или умножение, потом все остальные действия по порядку.
Когда нужно решить примеры без скобок, вначале выполняется умножение или деление, далее — вычитание либо сложение.

Источник: http://razvitiedetei.info/razvitie-shkolnika/pravila-umnozheniya-i-deleniya.html

По закону
Добавить комментарий